环的平凡扩张

戚天成

2023年12月16日

如无特别说明, 所有考虑的含幺环 R 有非零的幺元 $1 \neq 0$.

1 基本性质

Definition 1.1 (平凡扩张). 设 R 是含幺环, M 是 R-R 双模, 在加群 $R \oplus M$ 上定义乘法运算:

$$(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2), \forall (r_1, m_1), (r_2, m_2) \in R \oplus M$$

则 $R \oplus M$ 关于加法与上述乘法构成含幺环, 单位元为 $(1_R,0)$, 称为环 R(关于双模 $_RM_R$) 的**平凡扩张** (trivial extension). 我们把 R 关于双模 M 的平凡扩张记作 R*M.

环的平凡扩张是从已知环出发构造新环的重要手段. 例如我们下面通过平凡扩张给一个"环的 Jacobson 根作为左理想未必有限生成"的例子. 先指出一个基本的观察: 对任给 $(1,m) \in R*M$, 有逆元 (1,-m). 对任给 $(s,n),(0,m) \in R*M$, 有 (1,0)-(s,n)(0,m)=(1,-sm) 可逆, 所以

$$\{(0,m)|m\in M\}\subset \operatorname{Jac}(R*M).$$

Example 1.2. 当 R 取为域 F, M = V 是 F-F 双模时, 环 F*V 的 Jacobson 根 Jac(F*V) = $\{(0,v)|v\in V\}$ 是幂零理想. 特别地, 当 V 的左 F-模结构与右 F-模结构不同时, F*V 可能是非交换环, 且当 F 是无限维线性空间时, Jac(F*V) 作为左理想不是有限生成的.

证明: 任取 $(k,v) \in \operatorname{Jac}(F*V)$, 如果 $k \neq 0$, 则 $(1_F,0) - (k^{-1},0)(k,v) = (0,-k^{-1}v)$ 不可逆,矛盾. 故 $\operatorname{Jac}(F*V) = \{(0,v)|v \in V\}$ 并且它的平方是零理想,由此知当 $_FV$ 是无限维线性空间时 $\operatorname{Jac}(F*V)$ 作为左 理想是无限生成的.下面我们举例说明当 V 的左 F-模结构与右 F-模结构不同时,F*V 可能是非交换环.取 $F=\mathbb{C}$.在 $\prod_{i=1}^{\infty}\mathbb{C}=\{(a_1,a_2,a_3,\ldots)=f:\mathbb{Z}_{>0}\to\mathbb{C}, i\mapsto a_i|a_i\in\mathbb{C}, i\geq 1\}$ 上定义左 \mathbb{C} -模结构为:

$$k(a_1, a_2, a_3, ...) = (ka_1, ka_2, ka_3, ...), \forall k \in \mathbb{C}$$

右 C-模结构为:

$$(a_1, a_2, a_3, ...)k = (\bar{k}a_1, \bar{k}a_2, \bar{k}a_3, ...), \forall k \in \mathbb{C}$$

,易见 $\prod_{i=1}^{\infty} \mathbb{C}$ 是 \mathbb{C} - \mathbb{C} 双模,且左模与右模结构不同. 选取 $k \in \mathbb{C}$ 以及 $v \in \prod_{i=1}^{\infty} \mathbb{C}$ 使得 $kv \neq vk$,则

$$(k,0)(0,v) = (0,kv) \neq (0,vk) = (0,v)(k,0)$$

表明由 ℂ-ℂ 双模所决定环 ℂ 的平凡扩张是非交换环.

下面介绍一些平凡扩张的基本性质. 首先平凡扩张确实是环的扩张:

Proposition 1.3. 设 R 是含幺环, M 是 R-R 双模, 那么 $i: R \to R*M, a \mapsto (a,0)$ 是单保幺环同态.

下面的命题说平凡扩张 R*M 保留了 M 作为双模的全部信息.

Proposition 1.4. 设 R 是含幺环, M 是 R-R 双模, 那么 R*M 上有天然的 R-R 双模结构. 若记 0*M = $\{(0,x)|x \in M\}$, 那么 0*M 是 R*M 的双边理想且 (0* $M)^2 = 0$. 此外有双模同构 0*M \cong M.

我们还有下面的基本观察.

Proposition 1.5. 设 R 是含幺环, M 是 R-R 双模, 那么

$$\varphi: R \to (R * M)/(0 * M), a \mapsto (a, 0) + 0 * M$$

是环同构.

Corollary 1.6. 设含幺环 R 是左 Noether 环, M 是 R-R 双模且 R 有限生成, 则 R*M 是左 Noether 环.

证明: 这时 (R*M)/(0*M) 是左 Noether 环, 所以它作为左 R*M-模是左 Noether 模. 同时, 由 RM 是 Noether 模得到 0*M 作为左 R*M-模也是 Noether 模, 因此 R*M 是左 Noether 环.

Proposition 1.7. 设含幺环 R 是局部环, \mathfrak{m} 是全体不可逆元构成的理想, 那么对任何 R-R 双模 M, R*M 也是局部环, 且全体不可逆元构成理想 $\mathfrak{m}*M$.

证明: 注意到任何 $(a,x) \in R*M$, 只要 $a \in R$ 中可逆元, (a,x) 必可逆, 所以 R*M 中不可逆元一定是 $\mathfrak{m}*M$ 中元素, 易见 $\mathfrak{m}*M$ 中元素都不可逆, 所以 $\mathfrak{m}*M$ 就是 R*M 中不可逆元素全体, 它明显是双边理想.

现在我们局限在交换情形考虑问题.

Proposition 1.8. 设 R 是含幺交换环, M 是 R-模 (天然视作左右模结构一致的双模), 则 R*M 是也交换. 下述命题说交换环的平凡扩张不改变 Krull 维数.

Proposition 1.9. 设 R 是含幺交换环, M 是 R-模, 那么 $k.\dim R = k.\dim R * M$.

证明: 根据 [命题1.5], 我们知道 k.dimR = k.dim(R*M)/(0*M). 而 $(0*M)^2 = 0$ 表明任何 R*M 素理想包含 0*M, 那么 k.dim(R*M)/(0*M) = k.dimR*M.