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1 古典簇: 拟仿射簇与拟射影簇

这部分简要介绍古典代数几何中的研究对象——古典簇 (拟仿射簇和拟射影簇的统称,拟仿射簇作为古典
簇总同构于某个拟射影簇,见 [注记1.30])的初步理论: 拟仿射/射影簇的基本概念、正则映射、乘积簇、有理
映射、古典簇在给定点处的局部环以及古典簇上的正则函数环层. 主要参考文献是 [Har77, Hum75].

1.1 仿射簇回顾

本节我们回顾些交换代数中仿射簇的相关基本概念与结论以便统一记号 [Jac89]. 固定域 k 和正整数 n,
在 k

n 中由一些 k[x1, ..., xn] 中多项式的公共零点集称为仿射簇. kn 中所有的仿射簇满足拓扑空间的闭集公
理, 因此可赋予 k

n 上拓扑使得仿射簇成为该拓扑空间所有的闭子集, 相应的拓扑空间称为 n 维仿射空间, 其
上拓扑称之为 Zariski 拓扑. 对任何 k

n 的子集 S, 记 I(S) 是 k[x1, ..., xn] 中所有零化 S 的多项式构成的理

想. 对 k[x1, ..., xn] 的任何子集 I , 记 V(I) 是 I 在 k
n 中的公共零点集. 那么对任何 k

n 的子集 X , V(I(X))

就是 X 在 k
n 中的 Zariski 闭包. 对任何 f ∈ k[x1, ..., xn], 称 D(f) = k

n − V(f) 是 f 决定的主开集, 那么
{D(f)|f ∈ k[x1, ..., xn]}是 k

n 的一个拓扑基. Hilbert零点定理说当 k是代数闭域时,对 k[x1, ..., xn]的任何理

想 J 有 I(V(J)) =
√
J . 特别地,当 k是代数闭域时,映射 I(−) : {kn中的仿射簇} → {k[x1, ..., xn]中的根理想}

和 V(−) : {k[x1, ..., xn]中的根理想} → {kn中的仿射簇}是互逆的. 进而知代数闭域 k上仿射空间 k
n 中的闭

子集全体与多项式代数 k[x1, ..., xn] 的根理想全体有一一对应. 该对应限制在 k
n 的不可约仿射簇全体时 (回

忆拓扑空间称为不可约的,如果它非空且无法表示为两个真闭子集的并. 这也等价于任何两个非空开子集之交
非空; 任何非空开子集是稠密的. 这里再指出不可约空间总是连通的, 所以不可约空间的既开又闭子集只有空
集和全集. 任何拓扑空间的不可约子集的闭包依然是不可约的), 该对应给出不可约仿射簇全体和 k[x1, ..., xn]

的素理想全体间的双射. 该对应限制在 k
n 的单点集全体时,给出 k

n 所有点和 k[x1, ..., xn]的极大理想全体间

的双射. 对仿射簇 X ⊆ k
n 和 Y ⊆ k

m, 如果映射 φ : X → Y 满足存在多项式 f1, ..., fm ∈ k[x1, ..., xn] 使得

φ(p) = (f1(p), ..., fm(p)), ∀p ∈ X ,则称 φ是多项式映射. 仿射簇 X 上的多项式函数全体构成的 k-交换代数同
构于 k[x1, ..., xn]/I(X),该交换代数记作 A(X),称为X 的坐标环 (原因是它作为交换代数可由坐标函数生成).
由于 I(X)是根理想,所以仿射簇的坐标环总是没有非零幂零元的,即约化的 (仿射簇的不可约性等价于坐标环
是整环). 仿射簇间的多项式映射在 Zariski拓扑下总是连续的,并且任何仿射簇间的多项式映射 φ : X → Y 可

自然诱导代数同态 φ∗ : A(Y ) → A(X). 这给出 k上所有仿射簇与仿射簇间多项式映射构成的范畴到有限生成

约化 k-交换代数范畴的逆变忠实满函子. 并且 Hilbert零点定理表明当进一步假设 k是代数闭域时,这是本质
满的,即给出 k上仿射簇范畴和 k上有限生成约化交换代数范畴间的范畴对偶 (在微分几何场景,光滑流形间
的光滑映射也可以逆变地导出光滑函数环间的代数同态,对应的逆变函子同样是忠实满的,见 [GAV89]). 由此
可知域 k上仿射簇同构的充要条件是它们的坐标环代数同构 (这类似于光滑流形的微分同胚等价于光滑函数
环代数同构). 所以域上有限生成代数也被称为仿射代数.
回忆一个拓扑空间被称为 Noether 空间, 如果它的任何闭子集降链能够稳定. 例如当含幺交换环 R 是

Noether环时,素谱 Spec(R)是 Noether空间 (反之不然,例如 k[x1, x2, ...]/(x
2
1, x

2
2, ...)是素谱是单点空间但不

是Noether环). Noether空间的一个重要特性是任何非空闭子集可以分解为有限多个不可约闭子集之并,且当
该分解不可缩短时,分解在不计次序意义下唯一. 具体地,对Noether空间X 的任何非空闭子集 Y ,总存在有限
个不可约闭子集 Y1, ..., Yr 使得 Y =

r⋃
i=1

Yi. 若进一步要求 Yi ⊈ Yj , ∀i 6= j 时,正整数 r与集合 {Y1, ..., Yr}被 Y
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唯一确定,我们把这里的 Yi 称为 Y 的不可约分支. 根据 Hilbert基定理, k[x1, ..., xn]是 Noether环,所以任何
仿射簇是 Noether空间,进而有不可约分支的概念. 因此研究许多仿射簇的性质可化归为不可约情形.

Proposition 1.1. 任何 Noether拓扑空间是拟紧的. 特别地,任何仿射簇是拟紧的.

Proof. 设X 是Noether拓扑空间并且有开覆盖 {Uα}α∈Λ,那么 ∩α∈ΛU
c
α = ∅. 根据X 的Noether性质,X 的任

何由闭子集构成的非空集合都有极小元,这说明 {Uα1
∩ · · · ∩ Uαs

|α1, ..., αs ∈ Λ}有极小元,易见该集合的极小
元恰好为 ∩α∈ΛU

c
α = ∅. 这说明 X 能够被有限多个 Uαi

覆盖.

Remark 1.2. 我们指出 Noether拓扑空间的子空间依然 Noether: 如果 X 是 Noether拓扑空间, Y 是子空间且
有闭子集降链 Y1 ⊇ Y2 ⊇ · · · ,我们说明有充分大正整数 N 使得 YN = YN+1 = · · · . 这时对每个正整数 j 有 X

的闭子集 Xj 使得 Yj = Xj ∩ Y . 那么 Yj = (∩jk=1Xk) ∩ Y . 所以我们可不妨设 X1 ⊇ X2 ⊇ · · · . 于是根据条件,
存在正整数 N 使得 XN = XN+1 = · · · ,这导出结论.

Remark 1.3. 如果拓扑空间 X 可表示为有限多个子空间 X1, ..., Xm 的并,且每个子空间是 Noether空间,那么
X 也是 Noether空间: 如果有 X 的闭子集降链 F1 ⊇ F2 ⊇ · · · ,那么对每个 1 ≤ j ≤ m,得到 Xj 的闭子集降链

F1 ∩Xj ⊇ F2 ∩Xj ⊇ · · · . 于是存在正整数 N 使得 FN ∩Xj = FN+1 ∩Xj = · · · 对所有 1 ≤ j ≤ m成立. 这说
明有 FN = FN+1 = · · · ,我们得到 X 是 Noether空间.

Remark 1.4. 设X 是Noether空间,有不可约分支分解X = X1 ∪X2 ∪ · · · ∪Xr,那么X 的稠密开子集 U 和每

个 Xj 相交: 当 r = 1时结论直接成立,下设 r ≥ 2. 如果存在 Xk0 ∩ U = ∅,那么 U ⊆ X −Xk0 ⊆ X −Xk0 . 因
为 X −Xk0 ⊆ ∪i ̸=k0Xi,所以 X −Xk0 ⊆ ∪i ̸=k0Xi. 特别地, Xk0 ⊈ X −Xk0 . 但现在 X = U ⊆ X −Xk0 ,矛盾.

1.2 射影簇

本节介绍射影簇和拟射影簇的概念和基本性质,包含射影零点定理的证明,见 [定理1.13].
固定域 k 和正整数 n, 那么 k

n+1 − {0} 上的二元关系 (a0, a1, ..., an) ∼ (b0, b1, ..., bn) ⇔ 存在 λ ∈ k
× 使

得 ai = λbi, ∀0 ≤ i ≤ n, 是等价关系. 记 Pn = k
n+1 − {0}/ ∼. 任何 Pn 中的元素是某个 (a0, a1, ..., an)所在

的等价类, 记作 [a0 : a1 : · · · : an]. [a0 : a1 : · · · : an] 的任何代表元称为该点的齐次坐标. 对 k[x0, x1, ..., xn]

中的任何 d次齐次多项式 f ,易见 f(λa0, λa1, ..., λan) = λdf(a0, ..., an), ∀λ, ai ∈ k(如果 k是无限域, d是正整
数, 那么多项式 f ∈ k[x0, x1, ..., xn] 是 d 次齐次多项式的充要条件是对任何 λ ∈ k 有 f(λa0, λa1, ..., λan) =

λdf(a0, ..., an), ∀λ, ai ∈ k). 所以 [a0 : a1 : · · · : an] ∈ Pn 的某个代表元满足 d次齐次多项式 f 等价于它的所有

代表元都满足 f . 因此任何 k[x0, x1, ..., xn]中由齐次多项式构成的子集 S都可以在 Pn中考虑公共零点集,记作
V(S). 称 Pn 中一些齐次多项式的公共零点集为射影簇. 类似于仿射场景,可直接验证 Pn 中所有射影簇满足拓
扑空间闭集公理, 于是可赋予其上拓扑使得闭集全体是射影簇全体, 该拓扑也称为 Zariski拓扑. 带有 Zariski
拓扑的拓扑空间 Pn被称为 n维射影空间. 在继续解释射影簇的基本概念前,回忆些分次代数的基本术语.

Definition 1.5. 如果 k-代数 A 有 k-子空间族 {Ai}i∈Z 满足 AiAj ⊆ Ai+j , ∀i, j ∈ Z 以及 A = ⊕i∈ZAi, 则
称 {Ai}i∈Z 是 A 的一个 Z-分次, 带有 Z-分次的 k-代数 A 称为 Z-分次代数. Ai 中的元素称为 i 次齐次元. A
中元素在 Ai 中的分量称为该元素的 i 次齐次部分. 如果 Z-分次代数 A = ⊕i∈ZAi 满足对任何负整数 i 有

Ai = 0,即 A = ⊕i∈NAi,则称 A是 N-分次代数或正分次代数 (易验证正分次代数的幺元在 0次部分). 如果正
分次代数 A = ⊕i∈ZAi 满足 A0 = k, 也称 A 为连通分次代数. 如果 Z-分次代数 A = ⊕i∈ZAi 的理想 I 满足
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I = ⊕i∈Z(I ∩ Ai),则称 I 是 A的齐次理想 (易见 A的理想 I 是齐次理想当且仅当 I 可由一些齐次元生成). 如
果齐次真理想 P 满足对任何齐次理想 I, J , IJ ⊆ P 蕴含 I 与 J 至少有一个在 P 中,则称 P 是齐次素理想. 极
大的齐次真理想被称为齐次极大理想. 齐次极大理想明显是齐次素理想.

Remark 1.6. 因为分次代数的齐次理想等价于可由一些齐次元生成的理想,所以分次代数的齐次理想的乘积以
及和明显都是齐次的. 从齐次理想的定义也可看出齐次理想之交依然是齐次理想. 分次代数关于齐次理想的商
代数上具有给定分次代数诱导的标准分次.

Remark 1.7. 如果 V 是域 k 上 n + 1 维线性空间, 那么记 P(V ) 是 V 的所有 1 维子空间构成的集合后, 可以
和 Pn 视作等同, 原因是 Pn 可以等同于 k

n+1 中所有穿过原点的直线构成的集合. 如果 V 有基 e0, ..., en 和

v0, ..., vn,那么根据 V 中元素关于 e0, ..., en的坐标得到双射 σ : P(V ) → Pn以及关于 v0, ..., vn的坐标得到的双

射 τ : P(V ) → Pn, 于是我们得到 Pn 到自身的双射 στ−1, τσ−1, 它们分量上都是关于坐标的 1次齐次多项式.
采用 [定义1.25]将介绍的术语可知 P(V )关于 V 的不同基的选取赋予的射影空间结构是正则同构的.

实际上在交换 Z-分次代数场景,齐次理想是素理想和成为齐次素理想是等价的.

Lemma 1.8. 设 A = ⊕i∈ZAi是域 k上交换分次代数,有齐次理想 J . 则 J 是素理想当且仅当 J 是齐次素理想.

Proof. 素理想总是齐次素理想,并且易见齐次理想 J 是齐次素理想当且仅当对任何齐次元 a, b有 ab ∈ J 蕴含

a ∈ J 或 b ∈ J . 现在设 J 是齐次素理想以及 a = at + · · · + an, b = bs + · · · + bm ∈ A 都不在 J 中, 其中
at, an, bs, bm 6= 0且 t ≤ n, s ≤ m是整数. 设整数 u ≥ t和 v ≥ s是满足 au /∈ J 以及 bv /∈ J 的最小整数. 那么
at + · · ·+ au−1, bs + · · ·+ bv−1 ∈ J ,所以也有 (a− at − · · · − au−1)(b− bs − · · · − bv−1) /∈ J . 故 ab /∈ J .

下面我们主要关心正分次交换代数. 对正分次交换代数 A = ⊕i∈NAi, 易知 A 的任何齐次理想的根理想

依然是齐次理想. 任给射影簇 X ⊆ Pn, 记 I(X) 是 k[x0, x1, ..., xn] 的所有零化 X 的齐次多项式生成的理想

(那么 I(X) 不含非零常数, 是 k[x0, x1, ..., xn] 的真理想), 因此也是 k[x0, x1, ..., xn] 的齐次理想. 称分次代数
S(X) = k[x0, x1, ..., xn]/I(X)是射影簇 X 的齐次坐标环.

Example 1.9 (标准开覆盖). 对每个自然数 0 ≤ i ≤ n,记 Ui = {[a0 : a1 : · · · : an] ∈ Pn|ai 6= 0} = Pn − V(xi),
这是 Pn的开子集. 下面说明 Ui和仿射空间 k

n之间有自然的拓扑同胚. 命

φi : Ui → k
n, [a0 : a1 : · · · : an] 7→ (a0/ai, ..., ai−1/ai, ai+1/ai, ..., an/ai),

易见 φi 是定义合理的映射并且是双射, 下面验证 φi 是拓扑同胚. 任给非常数多项式 f ∈ k[y1, ..., yn], 设其
最高次是 d 次. 由 f̂(x0, ..., xn) = xdi f(x1/xi, ..., xi−1/xi, xi+1/xi, ..., xn/xi) 可定义出 d 次齐次多项式 f̂ ∈
k[x0, x1, ..., xn]. 可直接验证对 k[y1, ..., yn]的由非常数多项式构成的子集 S 有

φ−1
i (V(S)) = V({f̂ ∈ k[x0, x1, ..., xn]|f ∈ S}),

由此可知 φi关于 Zariski拓扑连续. 对任何 d次齐次多项式 g(x0, x1, ..., xn),存在唯一的 f ∈ k[y1, ..., yn]使得

xdi f(x0/xi, ..., xi−1/xi, xi+1/xi, ..., xn/xi) = g(x0, x1, ..., xn),

记 f 为 ĝ,那么对任何 k[x0, ..., xn]中一些齐次多项式构成的集合 T ,有

φi(Ui ∩ V(T )) = V({ĝ ∈ k[y1, ..., yn]|g ∈ T}).
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这说明 φi 是闭映射,即 φ−1
i 也连续. 因此 φi : Ui → k

n 是拓扑同胚. 于是 {Ui}ni=0 给出射影空间 Pn 的开覆盖,
并且覆盖中每个开子集同胚于仿射空间. 我们将 {Ui}ni=0称为 Pn的标准仿射开覆盖, Ui被称为第 i个仿射开子

集. 对每个自然数 0 ≤ i ≤ n,前面得到的拓扑同胚 φi : Ui → k
n也称为 Ui上的仿射坐标映射.

特别地,对任何射影簇 X ⊆ Pn, X ∩ Ui 作为 Ui 的闭子集可经 φi 同胚于 k
n 中的某个仿射簇. 于是任何射

影簇 X 有开覆盖 {X ∩ Ui}ni=0 并且每个开子集同胚于仿射簇. 反之,任何 k
n 中仿射簇可以经 φi 同胚于 Ui 的

某个闭子集,即射影空间中某个射影簇与 Ui之交.

Remark 1.10. 在之后引入射影簇的开子集与仿射簇的同构概念 (见 [定义1.25])后,我们会在 [例1.29]说明这
里的坐标映射 φi : Ui → k

n不仅是同胚,还是簇层面的同构.

考虑到 [例1.9]指出任何仿射簇能够同胚于某个射影簇的开子集,人们引入

Definition 1.11 (拟仿射簇与拟射影簇, [Har77]). 称仿射簇的开子集为拟仿射簇. 射影簇的开子集为拟射影簇.

Remark 1.12. 任何仿射簇是拟仿射簇,任何射影簇是拟射影簇. 利用 [例1.9]中的仿射坐标映射可知任何拟仿
射簇都同胚于某个拟射影簇. 而仿射空间能够同胚于某个拟射影簇,即射影空间的仿射开子集.

任取 k[x0, x1, ..., xn] 的齐次理想 I , 那么 I 的任何齐次多项式生成元集 S, T 满足 V(S) = V(T ). 所以我
们对任何齐次理想 I ,可以定义 V(I)为 I 的任何齐次生成元集 S 在 Pn 中的零点集,依然称为 I 在 Pn 中的公
共零点集. 于是任何 Pn 中的射影簇都可以视作 k[x0, x1, ..., xn]的某个齐次理想的公共零点集. 在新的记号下,
易见任何 k[x0, x1, ..., xn] 的齐次理想 I1, I2, 如果 I1 ⊆ I2, 那么 V(I1) ⊇ V(I2). 并且 Pn 的任何子集 X , 满足
V(I(X))为 X 的闭包. 由此可知射影簇都是 Noether空间. 如果 I1, I2 是 k[x0, x1, ..., xn]的齐次理想,同样也
有 V(I1I2) = V(I1) ∪ V(I2). 由此易知射影簇X 是不可约的当且仅当 I(X)是齐次素理想. 特别地,只要 k是无

限域,由 I(Pn) = 0得到 Pn不可约 (当 k是 2元域时, x2y − xy2 ∈ I(P1)).

Theorem 1.13 (射影零点定理, [Har77]). 设 k是代数闭域, R = k[x0, x1, ..., xn]并记 R+ = (x0, ..., xn),那么
(1)对 R的齐次理想 J , V(J) = ∅当且仅当存在正整数m使得 J ⊇ (R+)m.
(2)如果 R的齐次理想 J 满足 V(J) 6= ∅,那么 I(V(J)) =

√
J .

Proof. (1)如果存在正整数正整数m使得 J ⊇ (R+)m,那么由 xm0 , x
m
1 , ..., x

m
n ∈ J 得到 V(J) = ∅. 反之,如果齐

次理想 J 满足 V(J) = ∅,那么 J 在 k
n 中决定的仿射簇不是空集就是 {(0, 0, ..., 0)}. 如果 J 决定的仿射簇是空

集,那么 J = R. 如果 J 决定的仿射簇是 {(0, 0, ..., 0)},那么由 Hilbert零点定理得到
√
J = R+. 于是由 R是

Noether环立即得到存在正整数m使得 J ⊇ (R+)m.
(2) 对任何齐次多项式 f ∈ R+, 易见 f 能够零化 J 决定的仿射簇当且仅当 f 能够零化 J 决定的射影

簇. 所以 I(V(J))作为所有能够零化 J 决定的射影簇的齐次多项式生成的理想,根据 Hilbert零点定理自然有
I(V(J)) ⊆

√
J . 注意到 J 是齐次理想,所以由

√
J 的齐次生成元在 I(V(J))中可知 I(V(J)) =

√
J .

特别地,对任何非空射影簇 X , I(X)都是齐次根理想. 于是我们立即得到

Corollary 1.14 ([Har77]). 设 k是代数闭域, R = k[x0, x1, ..., xn]并记 R+ = (x0, ..., xn). 那么

V(−) : {J |J是R的齐次根理想且J 6= R+} → {Pn中的射影簇},

I(−) : {Pn中的射影簇} → {J | J是R的齐次根理想且J 6= R+}
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是一对互逆映射. 并且可限制为 Pn 中不可约射影簇与 R的异于 R+ 的齐次素理想全体间的双射 (回忆在 [引
理1.8]中我们已经看到齐次素理想就是素齐次理想).

Example 1.15 (射影簇的仿射锥, [Har77]). 设X ⊆ Pn是域 k上的非空射影簇,记 π : kn+1 − {(0, ..., 0)} → Pn

是标准投射,即 π(a0, a1, ..., an) = [a0 : a1 : · · · : an], ∀(a0, a1, ..., an) 6= (0, 0, ..., 0) ∈ k
n+1. 命

C (X) = {(0, 0, ..., 0)} ∪ π−1(X),

那么 C (X)就是 k
n+1 中由齐次理想 I(X)决定的仿射簇,称为射影簇 X 的仿射锥. 当 k是代数闭域时, C (X)

是不可约仿射簇的充要条件是 X 是不可约射影簇: 如果 C (X)不可约,那么 I(X)作为多项式代数的根理想就

是 I(C (X))(具体地, I(X)在 k
n+1 中定义的零点集就是仿射锥 C (X)),于是 I(X)是多项式环的素理想,这说

明 X 不可约. 如果 X 是不可约射影簇,那么 I(X)是素理想,同样 I(C (X)) = I(X)是素理想得到 C (X)的不

可约性. 对一般的域结论未必成立, 例如有限域 k上 P1 的任何单点子集 X 是不可约射影簇, 其对应的仿射锥
C (X)是至少两个点构成的 k

2子集,不是不可约的. 如果 X,Y ⊆ Pn都是射影簇,那么

C (X ∩ Y ) = C (X) ∩ C (Y ). (1.1)

Remark 1.16. 保持 [例1.15] 的记号, 射影簇 X ⊆ Pn 满足 C (X) = {(0, 0, ..., 0)} ∪ π−1(X). 那么 π−1(X) 是

C (X)的开子集. 如果 X 是不可约射影簇,那么 [例1.15]指出 C (X)是不可约仿射簇,这说明 π−1(X)在 C (X)

中稠密. 又例如当 π−1(X)在 C (X)中不是闭子集时,自动有 π−1(X)在 C (X)中稠密.

1.3 正则映射

在 [注记1.12]中我们已经看到拟仿射簇都拓扑同胚于某个拟射影簇,本节介绍拟仿射簇以及拟射影簇之间
的正则映射,于是我们能够讨论簇之间的同构. 首先介绍拟仿射簇上正则函数的概念,它是多项式函数的推广.

Definition 1.17 (拟仿射簇上正则函数, [Har77]). 设 X ⊆ k
n 是拟仿射簇, p ∈ X . 如果映射 φ : X → k满足存

在 p的开邻域 U ⊆ X 以及多项式 g, h ∈ k[x1, ..., xn]使得 h在 U 上处处非零并且在 U 上 φ = g/h,则称 φ在 p

处正则. 如果 φ : X → k在 X 的每点处正则,则称 φ是 X 上正则函数.

Remark 1.18. 易见拟仿射簇 X 上全体正则正则函数有 k-交换代数结构,称为 X 的正则函数环,记作 O(X).

Example 1.19. 考虑 φ : R → R, x 7→ 1/(x2 + 1),这是 R上正则函数但不是多项式函数.

我们马上说明拟仿射簇上的正则函数关于 Zariski拓扑是连续的,首先需要

Lemma 1.20 ([Har77]). 设 Y 是拓扑空间,有子集 Z 以及 Y 有开覆盖 {Ui|i ∈ I}. 那么 Z 是 Y 中的闭集当且

仅当 Z ∩ Ui 在每个 Ui 中是闭集. 特别地,如果取 Y = Pn 且 {Ui}ni=0 是 [例1.9]中的标准开覆盖,那么 Pn 的子
集 Z 是射影簇当且仅当对每个自然数 0 ≤ i ≤ n, Ui ∩ Z 在坐标映射 φi作用下的像集是仿射簇.

Proof. 只需证明充分性: 即证 Y − Z 是 Y 中开子集. 由条件,对每个 i ∈ I , Ui − Z = Ui − Z ∩ Ui 是 Ui 的开子

集,所以 Ui − Z 也是 Y 的开子集. Ui − Z 再关于所有的指标 i ∈ I 取并仍是 Y 的开子集.

Proposition 1.21 ([Har77]). 设 φ : X → k是拟仿射簇 X 上正则函数,则 φ是连续映射.

6



Proof. 由于 k关于 Zariski拓扑的真闭子集都是有限集,所以只需验证任何 α ∈ k有 φ−1(α)在X 中闭即可. 通
过 [引理1.20],只需证明对 X 的某个开覆盖 {Ui|i ∈ I}, φ−1(α) ∩ Ui 在每个 Ui 中闭即可. 由正则函数的定义,
不妨设每个 Ui满足存在多项式 fi, gi ∈ k[x1, ..., xn]使得 gi在 Ui上取值均非零且 φ在 Ui上可表示为 fi/gi. 于
是 φ−1(α) ∩ Ui = {q ∈ Ui|fi(q) = αgi(q)} = Ui ∩ V(fi − αgi)是 Ui中闭集.

下面我们介绍拟射影簇场景相应的概念,与仿射情形不同的是射影场景我们讨论的多项式都是齐次的.

Definition 1.22 (拟射影簇上正则函数, [Har77]). 设 X ⊆ Pn 是拟射影簇且 p ∈ X . 如果映射 φ : X → k满足

存在 p的开邻域 U ⊆ X 以及具有相同次数的齐次多项式 g, h ∈ k[x1, ..., xn]使得 h在 U 上处处非零并且在 U

上 φ = g/h,则称 φ在 p处正则. 如果 φ : X → k在 X 的每点处正则,则称 φ是 X 上正则函数. 与拟仿射情形
一样,拟射影簇 X 上所有正则函数构成 k-交换代数,称为 X 的正则函数环,记作 O(X).

在拟射影情形,正则函数的连续性证明和拟仿射情形本质上没有不同.

Proposition 1.23 ([Har77]). 设 φ : X → k是拟射影簇 X 上正则函数,则 φ是连续映射.

Proof. 与拟仿射情形一样只需验证任何 α ∈ k 有 φ−1(α) 在 X 中闭即可. 通过 [引理1.20], 只需证明对 X

的某个开覆盖 {Ui|i ∈ I}, φ−1(α) ∩ Ui 在每个 Ui 中闭即可. 由正则函数的定义, 不妨设每个 Ui 满足存在

次数相同的齐次多项式 fi, gi ∈ k[x1, ..., xn] 使得 gi 在 Ui 上取值均非零且 φ 在 Ui 上可表示为 fi/gi. 于是
φ−1(α) ∩ Ui = {q ∈ Ui|fi(q) = αgi(q)} = Ui ∩ V(fi − αgi)是 Ui中闭集 (注意 fi − αgi是齐次的).

拟仿射簇或拟射影簇上的正则函数的连续性保证了

Corollary 1.24. 设 X 是域 k上拟仿射簇或拟射影簇,如果正则函数 φ,ψ : X → k在 X 的某个稠密子集 D上

满足 φ(p) = ψ(p), ∀p ∈ D,那么 φ = ψ.

Proof. 这时 V(φ− ψ)是 X 的闭子集且包含 D,故由 D的稠密性可知 V(φ− ψ) = X .

仿射簇之间的态射我们讨论的都是多项式映射,在拟仿射簇或拟射影簇场景,人们考虑

Definition 1.25 (正则映射, [Har77]). 设 k 是域, X,Y 是 k 上的拟仿射簇或拟射影簇 (之后会使用统一的术
语). 如果连续映射 φ : X → Y 满足对 Y 的任何开子集 V 和 V 上正则函数 f : V → k,有 fφ : φ−1(V ) → k是

正则的,则称 φ是 X 到 Y 的正则映射.

Remark 1.26. 因为拟仿射簇的开子集依然是拟仿射簇,拟射影簇的开子集依然是拟射影簇,所以无论 Y 是拟射

影簇或是拟仿射簇, V 上都有正则函数的概念. 并且 φ的连续性保证了当 X 是拟仿射簇时, φ−1(V )是拟仿射

簇;当X 是拟射影簇时, φ−1(V )也是拟射影簇. 因为X,Y 未必是同时拟仿射或同时拟射影的,所以这里 f 的正

则性以及 fφ−1的正则性可能其中一个是针对拟仿射簇而另一个是针对拟射影簇.

Remark 1.27. 如果 Y = k是仿射直线, X 是拟射影簇或拟仿射簇,那么对任何正则映射 φ : X → k,取 V = Y

得到 φ是 X 上正则函数. 反之,如果 φ : X → k是正则函数,那么无论 X 是拟仿射簇或拟射影簇, [命题1.21]
和 [命题1.23]保证了 φ是连续的. 对 k的任何开子集 V 和 V 上的正则函数 f ,对任何 V 中点 q,存在 q在 V 中

的开邻域 Vq 和多项式 g, h ∈ k[x]满足 h在 Vq 上处处非零并且 h在 Vq 上可以表示为 g/h. 当X 是拟仿射簇时,
明显 fφ−1 在 φ−1(V )中任何点的某个开邻域上都可以表示为多项式函数的商,因此这时 φ : X → k作为拟仿
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射簇X 到仿射簇X 的连续映射也是正则映射. 当X 是拟射影簇时,那么由 φ是拟射影簇上正则函数得到 φ在

X 的每点附近都能够表示为次数相同的齐次多项式的商. 下面我们说明 φ : X → k也是拟射影簇 X 到仿射簇

k的正则映射. 现在保持前面关于记号 f, V, Vq, g, h的假设. 任取 p ∈ φ−1(V ),记 q = φ(p) ∈ V ,那么存在 q 在

V 中的开邻域 Vq ⊆ V 以及多项式 a0 + a1x+ · · ·+ anx
n, b0 + b1x+ · · ·+ bmx

m ∈ k[x]使得 an, bm 6= 0,在整个
Vq 上函数 b0 + b1x+ · · ·+ bmx

m处处非零并且作为 Vq 上函数有

f(z) =
a0 + a1z + · · ·+ anz

n

b0 + b1z + · · ·+ bmzm
, ∀z ∈ Vq.

现在 φ : X → k是正则函数说明对 p ∈ X ,存在开邻域 p ∈ W ⊆ X 和具有相同次数的齐次多项式 g, h使得 h

在W 上处处非零并且作为W 上函数 φ = g/h. 命 Up = φ−1(Vq) ∩W ,这是 p在 X 中的开邻域,满足

b0 + b1φ(z) + · · ·+ bmφ(z)
m 6= 0, ∀z ∈ Up.

于是在 Up上,我们能够将 fφ表示为

fφ(z) =
a0 + a1

g(z)
h(z)

+ · · ·+ an

(
g(z)
h(z)

)n
b0 + b1

g(z)
h(z)

+ · · ·+ bm

(
g(z)
h(z)

)m =
a0h(z)

n+m + a1g(z)h(z)
n+m−1 + · · ·+ ang(z)

nh(z)m

b0h(z)n+m + b1h(z)n+m−1g(z) + · · ·+ bmg(z)mh(z)n
,

这里 z ∈ Up. 因为 h, g 是次数相同的齐次多项式,所以 fφ能够在 Up 上表示为次数相同的齐次多项式的商,这
说明正则函数 φ : X → k作为拟射影簇到仿射簇 k的连续映射是正则映射. 由此我们看到

如果 X 是拟仿射簇或拟射影簇,那么 φ : X → k是正则函数当且仅当 φ是正则映射.

为了叙述上的方便, 之后我们把拟仿射簇和拟射影簇统称为古典簇. 任何古典簇 X 我们能够谈论其上正

则函数环 O(X)(之后我们会看到代数闭域上仿射簇的正则函数环就是坐标环, 见 [注记1.35]). 古典簇的开子
集或闭子集依然是古典簇, 并且古典簇上的正则函数在其开子集或闭子集上的限制给出相应子集上的正则函
数. 特别地,如果 φ : X → Y 是古典簇之间的正则映射,那么对 X 的任何开子集或闭子集 X ′, φ|X′ : X ′ → Y

依然是古典簇间的正则映射. 设 X,Y, Z 是拟仿射簇或拟射影簇, 那么任何正则映射 φ : X → Y 和正则映射

ψ : Y → Z 的合成依然是正则映射. 所以定义所有的拟仿射簇和拟射影簇构成的类为对象类,所有的正则映射
作为态射,映射的合成作为态射的合成,便能够得到一个范畴,这里称为古典簇范畴,将域 k上的古典簇范畴记

作 k-Cl.Var. 那么 [注记1.27]说明 k上古典簇到 k正则函数和该簇到 k的正则映射没有区别. 于是古典簇间
的正则映射可视作古典簇上正则函数的概念推广 (并注意取正则函数环可自然给出古典簇范畴到 k-交换代数
范畴的逆变函子). 在古典簇范畴中我们能够讨论簇的同构. 如果有古典簇间的同构 φ : X → Y ,那么我们得到
正则函数环之间的 k-代数同构: φ∗ : O(Y ) → O(X), f 7→ fφ. 我们也能够扩充仿射簇的概念: 如果古典簇 X

和某个仿射簇作为古典簇同构,称 X 是仿射的. 前面提到古典簇间的正则映射限制在定义域的开子集或闭子集
上依然是正则的,所以任何仿射的古典簇的闭子集依然是仿射的. 引入仿射古典簇的语言后能够讨论更多“本
质上仿射”的“非仿射簇”. 但确实存在非仿射的拟仿射簇,见 [例1.41].

Example 1.28. 设 k是无限域,命 Y = k − {0},那么由 k是不可约空间可知 Y 不是 k的闭子集: 否则由 Y 是

连通空间 k的既开又闭子集得到 Y 不是空集就是 k, 得到矛盾. 这说明 Y 无法表示为 k的闭子集, 即 k中仿

射簇. Y 作为拟仿射簇,可以在古典簇的语言下谈论同构. 命 X = V(xy − 1) ⊆ k
2,这是 k

2 中的仿射簇. 定义
φ : Y → X, a 7→ (a, 1/a)和 ψ : X → Y, (a, b) 7→ a,立即得到 φ,ψ 是古典簇间的正则映射并且互为逆映射. 于
是知作为古典簇有同构 X ∼= Y . 所以拟仿射簇 Y 虽然不能视作 k中仿射簇,但本质上是仿射的.
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Example 1.29 ([Har77]). 对自然数 0 ≤ i ≤ n,记 Ui是 [例1.9]中的仿射开子集,我们已经看到有拓扑同胚

φi : Ui → k
n, [a0 : a1 : · · · : an] 7→ (a0/ai, ..., ai−1/ai, ai+1/ai, ..., an/ai).

它的逆映射是 φ−1
i : kn → Ui, (b1, ..., bn) 7→ [b1 : · · · : bi−1 : 1 : bi+1 : · · · : bn],类似 [注记1.27]的讨论不难验证

φi是拟射影簇 Ui到仿射簇 k
n的正则映射而 φ−1

i 是仿射簇到拟射影簇 Ui的正则映射. 所以 φi是正则同构,即
作为古典簇有同构 Ui ∼= k

n. 因此 [例1.9]中的坐标映射也是古典簇同构. 于是每个 Ui 是仿射的古典簇. 特别
地,任何 Pn的子集 X 是射影簇当且仅当 X ∩ Ui都是仿射的古典簇,这是 [引理1.20]的重述.

Remark 1.30. 任给域 k上拟仿射簇 X ⊆ k
n,根据 [例1.29],有古典簇同构 k

n ∼= Ui,这里 Ui 是 Pn 的标准开子
集. 因此 X 与 Ui的某个闭子集作为古典簇同构,这说明在同构意义下,拟仿射簇都是拟射影簇.

[例1.28]和 [例1.29]都涉及验证某个古典簇到某个仿射簇的映射是正则的,因此我们记录

Corollary 1.31 ([Har77]). 设 k是域, X 是 k上古典簇, Y ⊆ k
m 是仿射簇. 那么映射 φ : X → Y 是正则映射

的充要条件是对 Y 的所有坐标函数 πi : Y → k, (y1, ..., ym) 7→ yi,这里 1 ≤ i ≤ m,有 πiφ是 X 上正则函数.

Proof. 必要性来自正则映射的定义,下面说明充分性. 因为 X 上正则函数全体构成环,所以由条件知 φ和任何

多项式函数 f : Y → k的合成依然是 X 上正则函数. 现在说明 φ是连续映射: Y 的任何闭子集W 也是 k
m 中

的仿射簇,可设W = V(S), S ⊆ k[x1, ..., xm]. 那么对每个 g ∈ S 有 gφ是 X 上正则函数,特别地, [命题1.21]和
[命题1.23]表明 gφ : X → k连续. 所以 (gφ)−1(0)是 X 的闭子集. 现在

φ−1(W ) =
⋂
g∈S

(gφ)−1(0)

是一些 X 的闭子集之交,所以 φ−1(W )是 X 的闭子集,这说明 φ : X → Y 连续. 于是对 Y 的任何非空开子集

U 上正则函数 h : U → k,由 f 在 U 内每点局部上是多项式函数之商 (当 X 是拟射影簇时,是具有相同次数的
齐次多项式函数之商)以及 φ与多项式函数的合成依然是 X 上正则函数可知 hφ在 X 的每点局部上是两个正

则函数之商 (当 X 是拟射影簇时, hφ在每点局部上可以表示为两个具有相同次数的齐次多项式函数之商),这
说明 hφ在 X 中每点正则,故 hφ : X → k是 X 上正则函数. 于是由定义得到 φ : X → Y 是正则映射.

Example 1.32 ([Har77]). 设 f ∈ k[x1, ..., xn],那么 D(f) = k
n − V(f)作为拟仿射簇是仿射的古典簇. 考虑仿

射簇 Y = V(xn+1f − 1) ⊆ k
n+1,那么根据 [推论1.31]有正则映射

φ : D(f) → Y, (a1, ..., an) 7→ (a1, ..., an, 1/f(a1, ..., an)).

而 ψ : Y → D(f), (b1, ..., bn+1) 7→ (b1, ..., bn) 明显是正则的并且和 φ 互为逆映射, 所以 D(f) 是仿射的. 特别
地, 对任何 k

n 中的仿射簇 X , X − V(f) = D(f) ∩ X 也和 V(xn+1f − 1) ∩ V(I(X)) ⊆ k
n+1 同构. 不难验证

xn+1f − 1是 k[x1, ..., xn, xn+1]中的不可约多项式,所以 Y = V(xn+1f − 1)不可约.
例如考虑一般线性群 GLn(k),可自然嵌入 k

n2 ,坐标函数为 {xij}ni,j=1,有行列式函数

detn :=
∑
σ∈Sn

(sgnσ)x1σ(1)x2σ(2) · · ·xnσ(n),

于是 GLn(k) = k
n2 −V(detn) ∼= V(ydetn − 1),这里我们将 k

n2

的坐标函数设为 {xij}ni,j=1 ∪ {y}. 所以 GLn(k)
是仿射古典簇. 实际上 detn是不可约多项式,进而 GLn(k)是不可约的.
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这里记录其不可约性的证明. 记 Dn = detn. 我们对正整数 n作归纳. 当 n = 1时, D1 = x11 明显不可约.
假设结论对 n − 1(n ≥ 2)的情形成立,那么对矩阵 (xij)n×n 第一行每个元素 x1i,根据归纳假设,其代数余子式
作为变量重新标号的 (n− 1)2 元行列式多项式依然不可约. 并且对不同的 1 ≤ j1 6= j2 ≤ n, x1j1 和 x1j2 的代数

余子式作为不相伴的不可约多项式没有公共的不可约因子. 现在记 xij 的余子式是 Dij ,那么

Dn(x11, ..., xnn) = D11x1 −D12x12 + · · ·+ (−1)1+nD1nx1n,

其中每个 D1j 不含任何变量 x1k. 将上述等式两端都视作以 x11, ..., x1n为变量,系数在 k[x21, ..., x2n, ..., xnn]中

的多项式,那么等号右边是关于 x11, ..., x1n 的 1次齐次多项式. 假设 Dn(x11, ..., xnn)不是不可约的,那么存在
非 (k中)常数多项式 f, g使得 Dn = fg. 那么 f 和 g中至少有一个在 k[x21, ..., x2n, ..., xnn]中,不妨设是 f . 那
么 f 整除每个 D1j(将 g视作以 x11, ..., x1n 为变量的多项式后整理 fg). 这迫使 f 和每个 D1j 相差某个 k中非

零常数,得到矛盾. 所以 Dn(x11, ..., xnn)是 k[x11, x12, ..., xnn]中不可约多项式.

现在我们说明任何古典簇都是局部仿射的,即所有仿射开子集构成拓扑基.

Corollary 1.33 ([Har77]). 设 X 是域 k上古典簇,那么 X 的所有是仿射古典簇的开子集构成 X 的拓扑基.

Proof. 先考虑X ⊆ k
n是拟仿射簇的场景,如果X = X ,那么这时X 有拓扑基 {X −V(f)|f ∈ k[x1, ..., xn]},根

据 [例1.32],该拓扑基中每个开子集是仿射的古典簇. 如果 X ⊊ X ,那么 Z = X −X 是 k
n 的闭子集：设仿射

簇 Y ⊆ k
n满足有 k

n的开子集使得 X = Y ∩ U ,那么 Y − Y ∩ U 作为 Y 的闭子集依然是仿射簇,于是

X −X = X ∩ (Y −X) = X ∩ (Y − Y ∩ U)

也是 k
n中仿射簇. 因此前面的讨论说 Z 是非空仿射簇,所以对任何 p ∈ X ,由 p /∈ Z 知可选取多项式 f ∈ I(Z)

使得 f(p) 6= 0. 那么 p ∈ X − V(f). 根据 f 的构造知 X − V(f) = X − V(f) 是 k
n − V(f) 的闭子集, 所以

[例1.32]说明 X − V(f)是仿射的古典簇. 总结一下,前面的讨论证明了对拟仿射簇 X 中任何点 p,有仿射古典
簇 Up = X −V(f)满足 p ∈ Up且 Up是X 的开子集. 现在对X 的任意点 p和 p的开邻域 V ⊆ X , V 作为X 的

开子集依然是拟仿射簇, 所以存在 p在拟仿射簇 V 中的仿射开邻域, 至此我们得到 X 的所有是仿射古典簇的

开子集全体构成 X 的拓扑集. 即当 X 是拟仿射簇时,结论成立.
现在设 X ⊆ Pn 是拟射影簇,我们需要说明 X 的所有是仿射古典簇的开子集构成 X 的拓扑基 (注意 X 的

任何开子集都是拟射影簇). 先说明任取 p ∈ X , 存在仿射古典簇 Up 使得 p ∈ Up 是 X 的开子集. 这时 p 在

[例1.9]中定义的某个标准仿射开集 Ui 中,注意 X ∩ Ui 作为拟射影簇能够经坐标映射 φi 同构于 k
n 的某个拟

仿射簇,而前面在拟仿射簇情形我们已经证明了拟仿射簇的所有是仿射古典簇的开子集构成给定拟仿射簇的拓
扑基. 所以存在仿射古典簇 Up ⊆ X ∩ Ui 包含 p且是 X ∩ Ui 的开子集. 进而 p ∈ Up 也是 X 的开子集. 现在对
X 的任何开子集 V , V 依然是拟射影簇. 于是对任何 p ∈ V ,把前面的讨论应用于拟射影簇 V 得到存在 V 的仿

射开子集包含 p,这就证明了 X 的所有是仿射古典簇的开子集构成 X 的拓扑基.

在 [例1.19]中指出域上的仿射簇的正则函数未必是多项式函数,但当基域是代数闭域时我们有

Theorem 1.34 ([Har77]). 设 k是代数闭域,如果 X ⊆ k
n是仿射簇,则任何 f ∈ O(X)是多项式函数.

Proof. 任取 f ∈ O(X). 现在 k
n 有拓扑基 {D(f) = k

n − V(f)|f ∈ k[x1, ..., xn]}并且 X 拟紧 (回忆 [命题1.1])
表明存在有限个多项式 f1, ..., fm使得X = (X∩D(f1))∪(X∩D(f2))∪· · ·∪(X∩D(fm))满足在每个X∩D(fi)
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上, f 可表示为 gi/hi 的形式,这里 gi, hi 是多项式且 hi 在 D(fi)上取值处处非零. 所以对任何 p ∈ V(hi) ∩ X
有 fi(p) = 0,即 fi ∈ I(V(hi) ∩X). 由 Hilbert零点定理 (这使用了代数闭域条件)可得存在正整数 l以及多项

式 Ci 使得 f li − Cihi ∈ I(X), 这也说明 Ci 在 X ∩ D(fi)上取值处处非零, 所以由 X ∩ D(fi) = X ∩ D(Cifi)

可知我们可以不妨设 hi = fi, 1 ≤ i ≤ m. 即这时 X = (X ∩ D(f1)) ∪ (X ∩ D(f2)) ∪ · · · ∪ (X ∩ D(fm))

满足 f 在每个 X ∩ D(fi) 上可表示为 gi/fi 的形式. 因为在 X ∩ D(fifj) 上总有 gi/fi = gj/fj 成立, 所以由
X = (X ∩ D(fifj)) ∪ (X ∩ V(fifj))可知作为 X 上函数有 fifj(gifj − gjfi) = 0. 现用 Gi 替换 figi, Hi 替换

f2
i ,则 X = (X ∩ D(H1)) ∪ (X ∩ D(H2)) ∪ · · · ∪ (X ∩ D(Hm)),在每个 X ∩ D(Hi)上 f 可表为 Gi/Hi,并且在
X 上恒有 GiHj = GjHi. 因为H1, ..., Hm在X 上没有公共零点,所以再应用Hilbert零点定理得到存在多项式
a1, ..., am使得

m∑
i=1

aiHi − 1 ∈ I(X). 构造多项式 g =
m∑
i=1

aiGi,那么在每个 X ∩ D(Hi)上有

Hig =
m∑
j=1

ajGjHi =
m∑
j=1

ajGiHj ⇒ g =
Gi
Hi

,

所以 f 作为 X 上正则函数可由多项式函数 g给出.

Remark 1.35. 特别地,对代数闭域 k上的仿射簇X ,标准嵌入 A(X) → O(X)是满射,即代数同构. 之后我们常
根据此代数同构将坐标环 A(X)与正则函数环 O(X)视作等同.

Remark 1.36. 由 [定理1.34]和 [推论1.31]易知代数闭域上仿射簇间作为古典簇的正则映射就是多项式映射.

Corollary 1.37 ([Har77]). 设 k 是代数闭域, f ∈ k[x1, ..., xn] 并记 D(f) = k
n − V(f). 那么 O(D(f)) =

k[x1, ..., xn]f ,于是任何正则函数 φ : D(f) → k满足存在自然数m和多项式函数 g使得 φ = f/gm.

Proof. 从 [例1.32]知有同构 D(f) ∼= Y = V(xn+1f − 1) ⊆ k
n+1,所以它们有同构的正则函数代数. 具体地,这

时任何正则函数 φ : D(f) → k诱导正则函数 Y → k, (a1, ..., an+1) 7→ φ(a1, ..., an). 根据 [推论1.34],该正则函
数由某个多项式函数给出: 设存在 h ∈ k[x1, ..., xn+1]使得 φ(a1, ..., an) = h(a1, ..., an+1), ∀(a1, ..., an+1) ∈ Y.现

在 an+1 = 1/f(a1, ..., an),所以存在多项式 g ∈ k[x1, ..., xn]和自然数m使得

φ(a1, ..., an) =
g(a1, ..., an)

f(a1, ..., an)m
, ∀(a1, ..., an) ∈ D(f).

于是 k[x1, ..., xn]f 到 O(D(f))的标准映射是满射,该标准映射明显是单射,故为同构.

Remark 1.38. 如果 [推论1.37]中 f = 0,那么 D(f) = ∅,这时 O(D(f)) = 0.

对域上的两个仿射簇,它们同构的充要条件是具有同构的坐标环. 现在在代数闭域场景我们对仿射的古典
簇证明类似的结果. 特别地,仿射古典簇的正则函数环都是内蕴的.

Proposition 1.39 ([Har77]). 设 k是代数闭域, X 是 k上古典簇, Y ⊆ k
m是仿射簇. 对任何正则映射 φ : X →

Y ,记 φ∗ : O(Y ) → O(X), g 7→ gφ是 φ诱导的交换代数同态. 那么映射

O : Homk-Cl.Var(X,Y ) → Homk-CAlg(O(Y ),O(X)), φ 7→ φ∗

是双射,其中 k-Cl.Var表示 k上古典簇范畴, k-CAlg表示 k-交换代数范畴. 特别地,古典簇 X 和仿射簇 Y 作

为古典簇同构当且仅当有 k-代数同构 O(X) ∼= O(Y ). 所以如果代数闭域上的古典簇 X,X ′ 都是仿射的,那么
利用 [定理1.34]不难看到 X ∼= X ′当且仅当 O(X) ∼= O(X ′).
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Proof. 如果正则映射 φ,ψ : X → Y 满足 φ∗ = ψ∗,那么对 Y 上的每个坐标函数 πi : Y → k, πiφ = πiψ. 特别地,
φ = ψ,即 O是单射. 现在任取 k-代数同态 F : O(Y ) → O(X),并记 ηi = F (πi), i = 1, 2, ...,m,这些是 X 上正

则函数. 那么通过定义 η : X → Y, p 7→ (η1(p), ..., ηm(p)),通过 [推论1.31]可知 η是正则映射.
现在正则映射 η : X → Y 满足 η∗(πi) = F (πi), i = 1, ...,m. 由 [定理1.34]知 O(Y )作为 k-交换代数可由

{π1, ..., πm}生成,所以 η∗ = F ,这说明 O是满射.

代数闭域上仿射簇和仿射簇间多项式函数全体构成的范畴与该域上有限生成交换约化代数范畴是范畴对

偶的. 现在我们把这个范畴对偶延拓至仿射古典簇上.

Corollary 1.40 ([Har77]). 设 k是代数闭域, k-Aff.Cl.Var是 k上所有仿射古典簇构成的范畴,并记 k-rfgCAlg
是 k上所有有限生成约化交换代数构成的范畴 ([注记1.36]指出仿射簇全体作为仿射古典簇的全子范畴中的态
射就是多项式映射). 如下定义逆变函子 O : k-Aff.Cl.Var → k-rfgCAlg: 对每个 X ∈ obk-AQAff,定义 O(X)

为 X 的正则函数代数. 对任何仿射的拟仿射簇间的正则映射 φ : X → Y ,定义 O(φ) = φ∗. 这明显是定义合理
的逆变函子. 那么 O是范畴对偶,即忠实满且本质满的逆变函子.

Proof. 由于 k 是代数闭域, O 的本质满性是明显的: 任何有限生成交换约化代数 A, 可设 A ∼= k[x1, ..., xn]/I ,
I 是 k[x1, ..., xn] 的根理想. 利用 Hilbert 零点定理知 V(I) ⊆ k

n 的坐标环同构于 A. 下面来看 O 的忠实满
性. 任取 X,X ′ ∈ obk-Aff.Cl.Var, 那么存在仿射簇 Y, Y ′ 使得 X ∼= Y 以及 X ′ ∼= Y ′. 现在设有正则同构
ψ : X ′ → Y ′,那么 ψ∗ : O(Y ′) → O(X ′)明显是 k-代数同构. 于是我们得到双射 ψ∗ : Homk-Aff.Cl.Var(X,X

′) →
Homk-Aff.Cl.Var(X,Y

′), η 7→ ψη以及代数同构

(ψ∗)∗ : Homk-rfgCAlg(O(X ′),O(X)) → Homk-rfgCAlg(O(Y ′),O(X)), F 7→ Fψ∗.

不难看到下图交换:

Homk-Aff.Cl.Var(X,X
′) Homk-rfgCAlg(O(X ′),O(X))

Homk-Aff.Cl.Var(X,Y
′) Homk-rfgCAlg(O(Y ′),O(X))

ψ∗

O

(ψ∗)∗

O

前面指出左右两列是双射,而 [命题1.39]表明下行是双射,所以上行也是双射.

Example 1.41. 设k是代数闭域,那么X = k
2−{(0, 0)} = D(x)∪D(y)是不可约拟仿射簇,嵌入映射 ι : X → k

2

所诱导的代数同态 ι∗ : O(k2) → O(X)是同构. 特别地,由 [推论1.40]知 X 不是仿射的.

Proof. 因为 k
2 是不可约的,所以 X 作为 k

2 的非空开子集依然不可约,于是由 [推论1.24]立即得到 ι∗ 是单射.
根据 [推论1.37], 对任何 f ∈ k[x, y], D(f) = k

2 − V(f) 上的正则函数都可以整体地表示为 g/f s 的形式, 这
里 g ∈ k[x, y], s ∈ N. 任取 X 上正则函数 φ : X → k, φ可限制为 D(x)以及 D(y)上的正则函数. 于是存在
g1, g2 ∈ k[x, y]和自然数 s, t使得 g1与 x互素, g2与 y互素并且作为 k

2 − V(xy)上的正则函数有

φ = g1/x
s = g2/y

t.

于是在 k
2 − V(xy)上有函数等式 ytg1 = xsg2. 不妨设 g1 6= 0,如果 φ在非空开子集 k

2 − V (xy)上取值为零同

样由 [推论1.24]得到 φ = 0,这时明显 φ ∈ Imι∗. 我们断言 s = 0: 若不然, s ≥ 1表明 x整除 g1,这与 g1和 x互

素矛盾. 从而 ytg1 = g2,这也迫使 t = 0. 由此得到 φ限制在非空开子集 k
2 − V (xy)上可以表示为某个多项式

函数,应用 [推论1.24]得到 φ可在 X 上整体地表示为多项式函数. 于是 ι∗是满射.

12



在本节最后我们讨论古典簇到拟射影簇的正则映射的局部性态 (仿射簇场景,回顾 [推论1.31]).

Proposition 1.42. 设 X 是古典簇, Y ⊆ Pm是拟射影簇, φ : X → Y 是正则的. 那么:
(1)如果 X ⊆ k

n 是拟仿射簇,那么对任何 x ∈ X ,存在 x的开邻域 Ux 和多项式 f0, ..., fm ∈ k[x1, ..., xn]满足

有某个 fi0 在整个 Ux上处处非零且 φ(p) = [f0(p) : f1(p) : · · · : fm(p)], ∀p ∈ Ux.
(2)如果X ⊆ Pn是拟射影簇,那么对任何 x ∈ X ,存在 x的开邻域Ux和具有相同次数的齐次多项式 f0, ..., fm ∈
k[x0, ..., xn]满足有某个 fi0 在整个 Ux上处处非零且 φ(p) = [f0(p) : f1(p) : · · · : fm(p)], ∀p ∈ Ux.

Proof. 以 (2)为例,设 φ(x) ∈ Ui0 ,那么 x ∈W = φ−1(Ui0),在W 上可设

φ(p) = [φ0(p) : · · · : φi−1(p) : 1 : φi+1(p) : · · · : φm(p)], p ∈W.

于是由正则性条件可知对每个自然数 0 ≤ k 6= i ≤ m,存在 x的含于W 的开邻域Wk 使得 φk 能够在Wk 上表

示为具有相同次数的齐次多项式之商,将这些多项式之商的表示取公分母并置 Ux = ∩k ̸=iWk 后易得.

Remark 1.43. 反之,如果古典簇 X 到拟射影簇 Y 的映射 φ : X → Y 满足 [命题1.42]结论中的局部性态,那么
也可以说明 φ是正则映射: 首先注意 φ和 Y 上任何正则函数的合成依然是正则的. 于是对 Y 的任何闭子集W ,
可设有齐次多项式集 S 满足W = Y ∩ V(T ),我们有

φ−1(W ) =
⋂
f∈T

(fφ)−1(0)

是一些闭集之交,因此 φ : X → Y 是连续映射. 现在 φ的连续性说明 Y 的任何非空开子集 V 满足 φ−1(V )是

X 的开子集,易见 φ与 V 上任何正则函数的合成给出 φ−1(V )上正则函数,因此 φ正则.

Example 1.44. 设 k是域, Pn是射影空间, ℓ(x0, ..., xn) = c0x0 + · · ·+ cnxn是 1次齐次多项式, ct 6= 0. 命

ψ : Pn − V(ℓ) → k
n, p = [x0 : x1 : · · · : xn] 7→ (

x0
ℓ(p)

, ...,
xt−1

ℓ(p)
,
xt+1

ℓ(p)
, ...,

xn
ℓ(p)

),

那么 [推论1.31]说明 ψ是正则映射. 易见下述映射是 ψ的逆映射:

φ : kn → Pn − V(ℓ), (x1, ..., xn) 7→ [ctx0 : · · · ctxt−1 : 1−
∑
k ̸=t

ckxk : ctxt+1 : · · · : ctxn],

应用 [注记1.43]可知 φ也是正则映射,所以 φ和 ψ互为正则同构逆. 由于任意两个 Pn 中不同的点 p, q总满足

存在 1次齐次多项式 ℓ使得 ℓ(p), ℓ(q) 6= 0. 所以 Pn中任意两点都在某个 Pn的仿射开子集中.

1.4 乘积簇初步

本节主要讨论仿射簇与射影簇的乘积簇. 以下固定域 k. 先讨论仿射场景.
如果X ⊆ k

n, Y ⊆ k
m都是仿射簇,那么作为集合,X×Y 可自然视作k

n+m的子集. 记 I(X) ⊆ k[x1, ..., xn]

以及 I(Y ) ⊆ k[n+ 1, ..., n+m]分别是定义 X 和 Y 的理想,它们可自然视作 k[x1, ..., xn+m]的子集. 于是可在
多项式代数 k[x1, ..., xn+m]中考虑由 I(X) ∪ I(Y )所生成的理想 P ,那么作为集合,有

X × Y = V(P ) ⊆ k[x1, ..., xn+1],
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这说明将X × Y 视作 k
n+m的子集后构成仿射簇. 并且如果记 pX : X × Y → X 和 pY : X × Y → Y 是标准投

射,那么它们作为多项式映射都是正则的. 任取古典簇 Z 以及正则映射 φ : Z → X,ψ : Z → Y ,定义

θ : Z → X × Y, z 7→ (φ(z), ψ(z)),

根据 [推论1.31]可知 φ,ψ正则保证 θ也是正则映射. 并且有交换图

X X × Y Y

Z

pX pY

φ ψ
θ

由此易知 (X × Y ; pX , pY )就是仿射簇 X 和仿射簇 Y 在古典簇范畴 k-Cl.Var中的积.

Definition 1.45 (古典簇的积). 设 X,Y 是域 k上的古典簇,称它们在 k-Cl.Var中的积为 X 与 Y 的乘积.

Remark 1.46. 前面的讨论表明两个仿射簇X,Y 的积不仅存在,而且是仿射的古典簇. 作为拓扑空间,X × Y 也

能够通过 X 与 Y 上的拓扑赋予积拓扑, 这和乘积簇上的 Zariski拓扑不同: 例如考虑 X = Y = k, 因为 k上

任意两个非空开子集相交非空, 所以 k不是 Hausdorff空间, 这蕴含 k × k在乘积拓扑意义下 ∆ = {(a, a) ∈
k
2|a ∈ k}不是闭集. 但在 Zariski拓扑下,∆ = V(x− y) ⊆ k

2明显是闭的. 如果仿射簇X,Y 分别有 Zariski开
子集 U, V ,那么 U × V 是X × Y 的 Zariski开子集: 这时 (X − U)× Y 是X × Y 的闭子集,X × (Y − V )也是

X × Y 的闭子集. 所以 U × V = X × Y − ((X − U)× Y ) ∪ (X × (Y − V ))是开子集. 所以

仿射簇 X 和 Y 的乘积 X × Y 上的 Zariski拓扑比 X 和 Y 上 Zariski拓扑的积拓扑更细.

在很特殊的例子上,例如 X,Y 都是单点仿射簇,那么 X × Y 上的这两个拓扑都是平凡拓扑.

由于前面通过对仿射簇X,Y 考虑集合X ×Y 和标准投射 pX , pY 给出了积对象 (X ×Y ; pX , pY )的具体实

现,在研究 X 和 Y 的乘积对象性质时,只需对具体的构造 (X × Y ; pX , pY )来讨论即可.

Lemma 1.47. 设 X ⊆ k
n是非空集合, y ∈ k

m满足 X × {y} ⊆ k
n+m是仿射簇,那么 X ⊆ k

n是仿射簇.

Proof. 设 I(X × {y}) = {fα}α∈Λ ⊆ k[x1, ..., xn+m],对每个 α ∈ Λ,定义

gα(x1, ..., xn) = fα(x1, ..., xn, y) ∈ k[x1, ..., xn],

那么 X = V({gα}α∈Λ)为仿射簇.

Remark 1.48. 如果 X ⊆ k
n, Y ⊆ k

m 都是仿射簇,那么 X × Y 的任何闭子集 Z 也是 k
n+m 中的仿射簇. 固定

y ∈ Y ,有标准同构 X ∼= X × {y}(因为 {y}作为单点集本身是仿射簇,所以这里谈论的 X × {y}作为仿射簇的
积对象也是仿射簇),这说明 X × {y}作为 X × Y 的子集是闭子集,同时 (X × {y}) ∩ Z 也是闭子集. 所以对仿
射簇 X × Y 的闭子集 Z 和固定的 y ∈ Y , {x ∈ X|(x, y) ∈ Z}是仿射簇,即 X 的闭子集.

Proposition 1.49 ([Hum75]). 设 X ⊆ k
n, Y ⊆ k

m都是不可约仿射簇,那么 X × Y 也是不可约仿射簇.

Proof. 设X × Y 有闭子集 Z1, Z2满足X × Y = Z1 ∪Z2,我们需要说明 Z1, Z2中至少有一个就是X × Y . 对固
定的正整数 i = 1, 2, [注记1.48]表明对每个 y ∈ Y 有 Xy

i = {x ∈ X|(x, y) ∈ Zi}是 X 的闭子集. 记

Xi = {x ∈ X|{x} × Y ⊆ Zi}, i = 1, 2.
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因为 {x} × Y ∼= Y 也是不可约的,所以 ({x} × Y ) ∩ Z1, ({x} × Y ) ∩ Z2 作为 {x} × Y 的闭子集,它们之并是
{x} × Y 迫使对任何 x ∈ X 必有 {x} × Y ⊆ Z1或 {x} × Y ⊆ Z2中的一个成立. 这说明

X = X1 ∪X2, Xi =
⋂
y∈Y

Xy
i .

于是知每个 Xi是 X 的闭子集,进而由 X 的不可约性知 X = X1或 X = X2,这就证明了结论.

特别地, [命题1.49]说明不可约仿射簇的乘积簇的坐标环是整区. 现在我们来看乘积簇的坐标环.

Proposition 1.50. 设 k是域,对仿射簇 X ⊆ k
n, Y ⊆ k

m有 k-代数同构 A(X)⊗k A(Y ) ∼= A(X × Y ).

Proof. 下面将仿射簇的坐标环与其上多项式函数环视作等同. 易知 A(X)× A(Y ) → A(X × Y ), (f, g) 7→ fg是

定义合理的 k-平衡映射,它诱导 k-线性映射 Φ : A(X) ⊗k A(Y ) → A(X × Y )使得 φ(f ⊗ g) = fg,易见 Φ是

k-代数同态且是满射. 下面验证 Φ是单射来完成命题证明: 若不然,设 f1 ⊗ g1 + · · ·+ fs ⊗ gs 6= 0 ∈ KerΦ,不妨
设 f1, ..., fs 是 k-线性无关的. 这时 f1(x)g1(y) + f2(x)g2(y) + · · ·+ fs(x)gs(y) = 0, ∀x ∈ X, y ∈ Y.固定 y,由 x

的任意性以及X 上多项式函数集 {f1, ..., fs}是 k-线性无关的迫使每个 gj(y) = 0. 从而每个 gj ∈ I(Y ),即作为
Y 上函数 gj = 0, ∀1 ≤ j ≤ s. 这说明 f1 ⊗ g1 + · · ·+ fs ⊗ gs = 0,矛盾. 因此 Φ是 k-代数同构.

当 k是代数闭域时,任何 k上仿射整区都能实现为某个仿射簇的坐标环,所以 [命题1.50]导出

Corollary 1.51. 设 k是代数闭域,那么任何 k上仿射整区 A,B 满足 A⊗k B 也是仿射整区.

Remark 1.52. 该推论可以视作仿射代数几何在交换代数中的一个简单应用. 我们指出推论条件中对基域的代
数闭域条件是本质的: C⊗R C不是整区. 原因是有 R-代数同构 C⊗R C ∼= C× C,后者明显不是整区.

下面我们着眼于射影簇的乘积,与仿射簇不同的是射影空间 Pn和 Pm无法直接地视作 Pn+m的闭子集.

Definition 1.53 (Segre嵌入). 设 n,m是正整数,定义映射S : Pn × Pm → Pnm+m+n为:

S ([x0 : x1 : · · · : xn], [y0 : y1 : · · · : ym]) = [x0y0 : · · · : x0ym : · · · : xny0 : · · · : xnym],

这明显是定义合理的映射,并且易验证S 是单射. 称S : Pn × Pm → Pnm+m+n是 Segre嵌入.

现在我们说明 Segre嵌入的像集总是射影空间中的闭子集.

Lemma 1.54. 对 Segre嵌入 S : Pn × Pm → Pnm+m+n,像集 ImS ⊆ Pnm+m+n 是射影簇. 于是我们可以通过
Segre嵌入,赋予 Pn × Pm上拓扑使得S | : Pn × Pm → S (Pn × Pm)成为拓扑同胚.

Proof. 根据 [引理1.20],只要验证 ImS 和 Pnm+m+n 的每个标准仿射开子集之交是仿射古典簇. 下面为了叙述
方便,记 q = nm+ n+m,用记号 (x0, ..., xn)表示 Pn 中点的齐次坐标, (y0, ..., ym)表示 Pm 中点的齐次坐标以
及用 (z00, ..., z0m, ..., zn0, ..., znm)表示 Pq 中点的齐次坐标. 用 Un

i 表示 Pn 中第 i个标准仿射开子集, Um
j 表示

Pm 中第 j 个标准仿射开子集并用 U q
ij 表示 Pq 中相应的标准仿射开子集. 对任何 0 ≤ i ≤ n, 0 ≤ j ≤ m明显有

S (Un
i × Um

j ) ⊆ U q
ij . 下面我们验证 ImS ∩ U q

ij 是仿射古典簇来完成证明. 只需注意到如果 [x0 : x1 : · · · : xn] ∈
Pn和 [y0 : y1 : · · · : ym] ∈ Pm满足S ([x0 : x1 : · · · : xn], [y0 : y1 : · · · : ym]) ∈ U q

ij ,那么明显有

[x0 : x1 : · · · : xn] ∈ Un
i , [y0 : y1 : · · · : ym] ∈ Um

j .
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所以S (Un
i × Um

j ) = ImS ∩ U q
ij . 记 φqij : U

q
ij → k

q 是坐标映射,那么如果把 k
q 的坐标写作

(w00, ..., w0m, ..., wi0, ..., wi,j−1, wi,j+1, ..., wim, ..., wn0, ..., wnm),

那么 φqij(S (Un
i × Um

j )) = V({wst − wsjwit|0 ≤ s 6= i ≤ n, 0 ≤ t 6= j ≤ m}) ⊆ k
q 是仿射簇. 故 S (Un

i × Um
j )

是仿射古典簇,根据前面的讨论, ImS ∩ U q
ij 对所有指标 i, j 是古典仿射的,由此完成证明.

Remark 1.55. 沿用 [引理1.54]的证明过程中的记号,那么我们看到对任何 0 ≤ i ≤ n, 0 ≤ j ≤ m有

S (Un
i × Um

j ) = ImS ∩ U q
ij

是 U q
ij 中的仿射古典簇. 并且上式表明在 ImS ∩ U q

ij 上可定义双射 Tij : ImS ∩ U q
ij → Un

i × Um
j 满足将每个

定义域中的元素,表示为 [x0y0 : · · · : x0ym : · · · : xny0 : · · · : xnym]映为 ([x0 : · · · : xn], [y0 : · · · : ym]). 于是在
[引理1.54]下通过 Segre嵌入赋予 Pn × Pm上拓扑使得S | : Pn × Pm → S (Pn × Pm)成为拓扑同胚后, Tij 也

是拓扑同胚. 虽然对 Un
i ×Um

j 作为集合并不是某个仿射空间或射影空间的子集,但我们有坐标映射诱导的双射
φni × φmj : Un

i × Um
j → k

n × k
m,可直接验证 (φni × φmj )Tij : ImS ∩ U q

ij → k
n × k

m 是正则同构. 由此可知对
Un
i 的任何闭子集 Xi 以及 Um

j 任何闭子集 Yj ,应用仿射簇的直积依然仿射可知 S (Xi × Yj)在 (φni × φmj )Tij

下的像集是仿射簇,因此S (Xi × Yj)是 U q
ij 的闭子集. 于是我们能够说明任何 Pn中的射影簇 X 和 Pm中的射

影簇 Y 诱导的像集 S (X × Y )依然是射影簇: 记 Xi = X ∩ Un
i , Yj = Y ∩ Um

j , 0 ≤ i ≤ n, 0 ≤ j ≤ m. 那么 Xi

是 Un
i 的闭子集且 Yj 是 Um

j 的闭子集,从前面的讨论得到S (Xi × Yj)是 U q
ij 的闭子集. 因此

S (X × Y ) ∩ U q
ij = S (Xi × Yj)是 U q

ij 的闭子集.

应用 [引理1.20]立即得到S (X × Y )是 Pq = Pnm+n+m的闭子集.

在 [注记1.55]我们看到任何射影簇 X ⊆ Pn和射影簇 Y ⊆ Pm满足S (X × Y )是射影簇. 我们证明

Proposition 1.56. 设 X ⊆ Pn, Y ⊆ Pm 是拟射影簇, q = mn + n + m. 那么 S (X × Y ) 是 Pq 中的拟射影
簇, 并且如果记 πX : S (X × Y ) → X 是将每个形如 [x0y0 : · · · : x0ym : · · · : xny0 : · · · : xnym]的元素映至
[x0 : · · · : xn] ∈ X 的映射, πY : S (X × Y ) → Y 将每个形如 [x0y0 : · · · : x0ym : · · · : xny0 : · · · : xnym]的元素
映至 [y0 : · · · : ym] ∈ Y ,那么 πX , πY 都是定义合理的满正则映射且 (S (X × Y );πX , πY )是古典簇范畴中的积.

Proof. 这里 πX 和 πY 的定义合理性来自 Segre 嵌入是单射, 易见它们都是满射. 只要考虑 πX 和 πY 在 Pq

的仿射开子集 U q
ij 上的限制就容易看出 πX 和 πY 都是正则的. 根据 [注记1.55] 易见对 Pn 的任何开子集 U ,

S (U × Pm)是 ImS 的开子集,进而知 Pn 中的拟射影簇 X 满足 S (X × Pm)是 Pq 中的拟仿射簇. 同理可知
S (Pn × Y )也是 Pq 中的拟射影簇. 结合S 是单射立即得到

S (X × Y ) = S ((X × Pm) ∩ (Pn × Y )) = S (X × Pm) ∩ S (Pn × Y )

也是 Pq 中的拟射影簇. 至此我们证明了S (X × Y )是拟射影簇以及 πX 和 πY 是正则映射.
现在我们验证 (S (X × Y );πX , πY )是古典簇范畴中的积. 任取古典簇 Z. 如果 Z 是古典簇,并有正则映射

φ : Z → X 以及正则映射 ψ : Z → Y ,那么有映射 θ : Z → S (X × Y ), z 7→ S (φ(z), ψ(z)),利用 [注记1.43]可
知 θ是正则的,并且满足 πXθ = φ, πY θ = ψ, S 的定义以及是单射保证了满足该条件的 θ唯一.

Example 1.57. 用 Segre嵌入S : Pn×Pn → Pn2+2n赋予 Pn×Pn上拓扑后,对角线集∆ = {(x, x) ∈ Pn×Pn|x ∈
Pn}是闭集,即S (∆)是 Pn2+2n中射影簇.

Proof. 考虑 Pn2+2n中的射影簇 V({zij − zji|0 ≤ i, j ≤ n}) ∩ ImS ,易验证这就是S (∆).
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1.5 Grassmann簇与旗簇

设 V 是域 k 上 n 维线性空间, 那么我们可以考虑 V 决定的外代数 E(V ), 该 k-代数有典范的 N-分次结
构, d次部分就是 V 的 d次外幂 ∧dV . 如果 d ≥ n + 1,则 ∧dV = 0,否则,不难看到 dimk ∧dV = Cdn: 如果记
{v1, ..., vn}是 V 的 k-基,那么 ∧dV 有 k-基 {vi1 ∧ · · · ∧ vid | 1 ≤ i1 < · · · < id ≤ n}. 此外, V 的任何子空间W

决定的外幂 ∧dW 明显可等同于 ∧dV 的子空间,通过考察典范 k-积. 于是,任何 V 的 d ≤ n维子空间W ,都对
应 ∧dV 的 1维子空间 ∧dW . 根据 [注记1.7],我们可以谈论 ∧dV 的所有 1维子空间构成的射影空间 P(∧dV ).

Notation. 对 1 ≤ d ≤ n,记 Gd(V )是 V 的所有 d维子空间构成的集合.

我们有标准的映射 ψ : Gd(V ) → P(∧dV ),W 7→ ∧dW , 这明显是单射: 设 W,W ′ ∈ Gd(V ) 满足 ∧dW =

∧dW ′. 总可选取V 的k-基 v1, ..., vn满足 v1, ..., vd是W 的基, vr, vr+1, ..., vr+d−1是W ′的基. 那么 v1∧v2∧· · ·∧vd
和 vr ∧ vr+1 ∧ · · · ∧ vr+d−1相差某个非零常数倍,这逼迫 r = 1,所以W =W ′. 前面的讨论表明

集合 Gd(V )可嵌入射影空间 P(∧dV ).

下面我们希望在集合 Gd(V )上赋予射影簇结构, [命题1.60],得到的射影簇 Gd(V )被称为 Grassmann簇.
根据 [引理1.20],只需说明 Imψ 和 P(∧dV )的标准仿射开子集 (见 [例1.9])的交都是闭集. 下面我们验证

这一点. 不妨设考虑的 P(∧dV )的标准仿射开子集 U 是关于 v1 ∧ · · · ∧ vd的系数/坐标非零的标准开子集 (前面
已经指出 ∧dV 有 k-基 {vi1 ∧ · · · ∧ vid | 1 ≤ i1 < · · · < id ≤ n}). 我们需要验证 Imψ ∩ U 是 U 的闭子集.

Lemma 1.58 ([Hum75]). 对D ∈ Gd(V ), ψ(D) ∈ U 当且仅当D有 k-基w1, ..., wd满足wj形如 vj+
∑

i>j aijvi.

Proof. 充分性是明显的,这时 w1 ∧ · · · ∧ wd关于 v1 ∧ · · · ∧ vd的分量明显非零. 必要性: 如果 D ∈ U ,设 D有基

u1 =
∑n

j=1 b1jvj , ..., ud =
∑n

j=1 bnjvj ,那么该基的 d次外积关于 v1 ∧ · · · ∧ vd 的分量是矩阵 B = (bij)n×d 上方

的 d阶子式,于是知该子式非零. 所以 (u1, ..., ud) = (v1, ..., vn)B,其中 B 是列满秩矩阵. 现在我们可以对 B 作

初等列变换使得 B 的前 d行构成单位矩阵. 那么利用初等变换给出的 d阶可逆阵调整 (u1, ..., ud)即可.

Remark 1.59. 当 [引理1.58]的结论成立时, D具有的所要形式的 k-基 w1, ..., wd 明显还是唯一的: 因为证明过
程中矩阵 B 右乘上 d阶可逆矩阵 Q,想要 BQ的前 d行给出单位阵,那么 Q是唯一的.

因此, [引理1.58]和 [注记1.59]说明 Imψ ∩ U 中的点关于 ψ的唯一原像,恰是那些有如下形式的基

v1 +
∑
i>1

ai1vi, v2 +
∑
i>2

ai2vi, ..., vd +
∑
i>d

aidvi (1.2)

的 d 维子空间. 而每个这样的 d 维子空间在 ψ 下的像, 可以使用(1.2)得到 d 次外积来被 ∧dV 的典范 k-基
{vi1 ∧ · · · ∧ vid | 1 ≤ i1 < · · · < id ≤ n} 线性表示. 限制关于 v1 ∧ · · · ∧ vd 的坐标系数是 1, 那么我们可以
把(1.2)的 d次外积调整为 v1 ∧ · · · ∧ vd +

∑
j>d(±)aij(v1 ∧ · · · ∧ vd ∧ vj) + (∗),其中 (∗)中的系数都是关于 aij

的多项式,所以 Imψ ∩ U 经过 U 到 k
Cd

n−1的仿射坐标映射, [例1.9],对应闭子集. 于是我们得到

Proposition 1.60 ([Hum75]). 设 V 是 n维 k-线性空间, d ≤ n是正整数. 则 Gd(V )是 P(∧dV )中射影簇.

因此,从域 k上 n维线性空间 V 出发,对固定的正整数 1 ≤ d ≤ n,考察所有 d维子空间构成的集合Gd(V ),
可以借助嵌入 ψ : Gd(V ) → P(∧dV )赋予 Gd(V )上射影簇结构,得到 Grassmann簇的构造.
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使用 Grassmann簇可以构造旗簇. 回忆 n维线性空间 V 中的一个旗是指子空间严格升链 0 ⊊ V1 ⊊ V2 ⊊
· · · ⊊ Vk = V . 如果旗满足 k = n,则称这是满旗. 所有 V 的满旗构成的集合,记作 F(V ),明显到

G1(V )×G2(V )× · · ·Gn(V )

有标准嵌入,注意到 Segre嵌入使得 G1(V ) ×G2(V ) × · · ·Gn(V )成为射影簇, [注记1.55],所以一旦说明 F(V )

视作乘积簇 G1(V )×G2(V )× · · ·Gn(V )的子集后是闭子集,便能够得到 F(V )也是射影簇,称为 (满)旗簇.
集合 F(V )是闭子集的验证同样来自 [引理1.20](使用 P(∧dV )中标准仿射开子集的关于 d的直积得到开

覆盖)和 F(V )中点关于在 ∧dV 的典范 k-基的表示系数上的分析 [Hum75, p.15].
若记 G = GL(V ),那么 G自然诱导 F(V )上的群作用 (因为 F(V )中的元素作为升链 0 ⊊ V1 ⊊ V2 ⊊ · · · ⊊

Vn = V 满足 dimk Vj = j): 任何 σ ∈ G,有

G× F(V ) → F(V ), (σ, 0 ⊊ V1 ⊊ V2 ⊊ · · · ⊊ Vn = V ) 7→ 0 ⊊ σ(V1) ⊊ σ(V2) ⊊ · · · ⊊ σ(Vn) = V. (1.3)

这时我们可选取 V 的 k-基 e1, ..., en使得 Vj 有 k-基 e1, ..., ej . 不难验证 G在旗簇 F(V )上的群作用是传递的.

1.6 有理映射

与仿射古典簇不同的是,通常不可约古典簇的 (整体)正则函数可能只有常值函数,因此人们在研究不可约
古典簇时也会考虑定义在某个开子集上的正则函数. 下面我们将讨论定义在不可约古典簇某个非空开子集上
的正则映射,在此之前我们先记录不可约古典簇上 (整体)正则映射能够被它在定义域非空开集上的作用决定.

Lemma 1.61 ([Har77]). 设 k是域,X 是不可约古典簇, Y 是古典簇,且 φ,ψ : X → Y 都是正则映射. 如果存在
X 的非空开子集 U 使得 φ|U = ψ|U ,那么 φ = ψ.

Proof. 如果 Y 是拟仿射的,那么 Y 可嵌入某个射影空间的标准仿射开子集中成为拟射影簇,因此我们只要证明
结论对 Y 是拟射影簇的场景成立即可 (具体地,利用 Y 和某个拟射影簇间的同构导出的正则映射是同构,考虑
φ,ψ与该正则同构的合成来将问题转化为证明 Y 是拟射影簇的情形). 设 Y ⊆ Pn,那么 [命题1.56]表明有正则
映射 S (φ × ψ) : X → S (Y × Y ), x 7→ S (φ(x), ψ(x)),而 {x ∈ X|φ(x) = ψ(x)}就是 Pn × Pn 中对角线集 ∆

对应的集合 S (∆)关于 S (φ × ψ)的原像集,于是由 [例1.57]得到 {x ∈ X|φ(x) = ψ(x)}是闭集,所以由该闭
集包含某个稠密开子集 U(因为 X 不可约)便知 φ = ψ.

现在固定不可约古典簇 X 和古典簇 Y ,考虑集合

B = {(U,φ)|U是X的非空开子集且φ : U → Y是正则函数},

在上面定义二元关系 ∼: (U,φ) ∼ (V, ψ),如果存在非空开子集W ⊆ U ∩ V 使得 φ|W = ψ|W . 易知 ∼是B上的

等价关系. 根据 [引理1.61],这时 φ和 ψ在 U ∩ V 上的取值都一样 (这里用到了 U ∩ V 依然不可约).

Lemma 1.62. 沿用前面的记号,任给 (U,φ) ∈ B,等价类 [(U,φ)]中有定义域最大的代表元.

Proof. 事实上,X的不可约性说明等价类 [(U,φ)]中任意两个代表元的定义域之交非空,并且代表元中的正则函
数在定义域交集一致, 所以我们可以定义 U 为等价类 [(U,φ)]中所有定义域之并, 并可自然定义出 U 上正则

函数 φ使得其是等价类 [(U,φ)]的任何代表元上正则函数的延拓. 于是 (U , φ)就是所需代表元.
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Definition 1.63 (有理映射, [Har77]). 设 X 是不可约古典簇, Y 是古典簇. 称B中的任何等价类为 X 到 Y 的

一个有理映射. 如果 X 到 Y 的有理映射作为B 中等价类在 [引理1.62]下,定义域最大的代表元是 (U , φ),就
把该有理映射记作 φ : X 99K Y ,并称 U 是该有理映射的定义域.

任何不可约古典簇 X 到古典簇 Y 的正则映射都能给出一个定义域在 X 上的有理映射. 例如不可约古典
簇 X 上恒等映射 idX 就决定一个有理映射,以后依然记作 idX . 于是我们可以定义

Definition 1.64 (双有理等价, [Har77]). 设X,Y 是不可约古典簇,如果有理映射 φ : X 99K Y 满足存在有理映
射 ψ : Y 99K X 使得 ψφ = idX 以及 φψ = idY (这里的等号是作为等价类,这里我们要求 ψφ和 φψ都是定义合

理的),则称 φ是双有理映射 (对双有理映射 φ,定义中的 ψ被 φ唯一决定). 这时称 X 和 Y 是双有理等价的.

Remark 1.65. 有理映射是用特殊等价关系的等价类定义的,并不是集合层面的映射. 并且在 [定义1.64]中我们
默认要求了有理映射 φ : X 99K Y 和有理映射 ψ : Y 99K X 是可合成的: ψ的定义域 V 和 φ的定义域 U 满足

φ−1(V )和 ψ−1(U )都非空. 这时根据 X,Y 都是不可约古典簇可知 φ−1(V ) ∩ U 与 ψ−1(U ) ∩ V 都非空. 由此
我们能够知道存在 X 的非空开子集 U 和 Y 的非空开子集 V 使得 φ和 ψ 的限制给出 U 和 V 之间的同构. 特
别地,我们双有理映射的定义中, φ和 ψ在各自定义域上的像集分别在 Y 和 X 中稠密. 所以我们这里定义的双
有理等价事实上是 [定义1.70]下的支配有理映射.

Remark 1.66. 不可约古典簇 X 到 k的有理映射被称为有理函数,不可约古典簇 X 上所有有理函数构成 k-交
换代数,事实上它还是域: 任取有理函数 φ : X 99K k,设其定义域是 U ,那么 U − V(φ)(虽然 φ未必是多项式

函数,但我们依然可以考虑其零点集,并且由 φ是 U 上正则函数知作为连续函数的零点集, V(φ)是 U 的闭子

集)是 X 的开子集. 只要 φ 6= 0(作为有理函数,即 φ在定义域的任何非空开子集上取值非零),那么 U − V(φ)
是非空的,进而 (U − V(φ), 1/f)所在的等价类 ψ : X 99K k满足 φ和 ψ作为有理函数的乘积是常值函数 1(作
为有理函数). 我们将 X 上所有有理函数称之为 X 的有理函数域,记作 K(X).

Example 1.67. 设 X 是不可约古典簇, U 是非空开子集. 那么标准嵌入 ι : U → X 作为正则映射可自然视作有

理映射. 这时 ι作为有理映射是双有理的: (U, ι)所在的B中等价类 ψ满足 ψι = idU , ιψ = idX .

不可约仿射簇的坐标环是整区,下面我们说明不可约仿射簇的有理函数域就是坐标环的商域.

Theorem 1.68 ([Har77]). 设 k是域, X ⊆ k
n是不可约仿射簇,则 K(X)同构于坐标环 A(X)的商域.

Proof. 记坐标环A(X)的商域为Q,命 η : Q→ K(X), f/g 7→ [(X−V (g), f/g)]. 下面说明 η是定义合理的映射.
首先 g是X 上非零多项式函数,所以X −V(g)是X 的非空开子集. 如果 f1/g1 = f2/g2 ∈ Q,那么存在X 上非

零多项式函数 u使得 u(f1g2 − f2g1) = 0. 因此在 (X −V(u))∩ (X −V(g1))∩ (X −V(g2))这一非空开集 (因为
X 不可约)上 f1/g1 与 f2/g2 是相同的正则函数,由此知 [(X − V(g1), f1/g1)] = [(X − V(g2), f2/g2)]. 所以 η是

定义合理的映射,它明显是 k-代数同态. 由于Q是域,所以 η是单射. 最后只要再验证 η是满射. 任取X 上有理

函数 [(U, f)],那么存在 U 的开子集 V , X 上多项式函数 g, h使得 h在 V 上处处非零并且在 V 上 f = g/h. 因
为 h是 X 上非零多项式函数,故 [(V, g/h)]就是 g/h ∈ Q关于 η的像. 于是 η是代数同构.

Remark 1.69. 当 k是代数闭域时, [注记1.35]表明 K(X)也可以视作正则函数环 O(X)的商域.

现在设 X,Y, Z 都是不可约古典簇且有有理映射 φ : X 99K Y 和 ψ : Y 99K Z,那么 Imφ未必能够和 ψ 的

定义域有非空的交集,所以通常有理映射未必能够作复合. 因此为引入有理映射的复合我们需要
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Definition 1.70 (支配有理映射, [Har77]). 设 φ : X 99K Y 是不可约古典簇间的有理映射. 如果 Imφ是 Y 的

稠密子集 (更具体地,设有理映射 φ的定义域是 U ,这里要求 φ(U )在 Y 中稠密),则称 φ是支配的.

Remark 1.71. 如果有理映射 φ : X 99K Y 是不可约古典簇之间的有理映射, 满足存在 φ 的代表元 (U,φ) 使

得 φ(U)在 Y 中稠密,那么 φ当然是支配有理映射. 反之,如果 φ是支配的,对 φ的任何代表元 (W,φ)也会有

φ(W )在 Y 中稠密: 这时 φ : U → Y 满足 φ(U)在 Y 中的闭包包含 φ(W ),其中W 表示W 在 U 中的闭包. 所
以 φ(U)在 Y 中的闭包包含 φ(U ). 这蕴含 φ(U)是 Y 中的稠密子集.

Remark 1.72. 设 X,Y, Z 都是不可约古典簇且有支配有理映射 φ : X 99K Y 和 ψ : Y 99K Z,设 ψ 的定义域是

V ,那么由 Y 是不可约的,立即得到 Imφ ∩ V 6= ∅. 所以 φ−1(V )是X 的非空开子集. 现在设 φ的定义域是 U ,
那么 X 的不可约性保证 U ∩ φ−1(V )是 X 的非空开子集,于是可得到 (U ∩ φ−1(V ), ψφ|),我们定义该二元组
所在的等价类,即对应的有理映射是 ψφ : X 99K Z(根据前面的讨论,要定义出该有理映射只需要 φ的支配性,
即支配有理映射和有理映射都能够定义合成). 下面我们说明有理映射 ψφ : X 99K Z 依然是支配的: 只需验证
U ∩ φ−1(V )关于 ψφ下的像集在 Z 中稠密. 现在 φ(U ) ∩ V 在 Y 中稠密并且就是 φ(U ∩ φ−1(V )). 接下来我
们只需说明 ψ(φ(U ) ∩ V )在 Z 中稠密就能得到 ψφ是支配的. 因为 ψ是 U ∩ φ−1(V )上连续映射,所以

Imψ = ψ(U ∩ φ−1(V )) ⊆ ψ(U ∩ φ−1(V )),

于是知 ψ(U ∩ φ−1(V )) = Z,即 ψφ : X 99K Z 支配.

从 [注记1.72] 知不可约古典簇全体和不可约古典簇间的支配有理映射能够构成一范畴. 类似于正则函
数环情形, 一个基本的观察是任何不可约古典簇间的支配有理映射 φ : X 99K Y 都能够导出代数同态 φ∗ :

K(Y ) → K(X), f 7→ fφ(注意这里记号 f 是有理函数,与 φ作为有理映射考虑合成). 于是我们得到由不可约古
典簇与支配有理映射构成的范畴到 k-交换代数范畴的逆变函子.

Lemma 1.73 ([Har77]). 设X 是代数闭域 k上不可约古典簇,那么任何非空开子集 U 作为不可约古典簇,标准
嵌入 ι : U → X 作为有理映射诱导的代数同态 ι∗ : K(X) → K(U)是同构. 特别地,对不可约古典仿射簇,可选
取非空开子集 U 使得是仿射古典的 (回忆 [推论1.33]),而 [命题1.39]说明 O(U)是 k上有限生成整区. 因此由
[定理1.68]知 K(U)是仿射整区 O(U)的商域. 我们把 k上仿射整区的商域称为 k的有限生成域扩张. 那么代
数闭域 k上不可约古典簇的有理函数域都是 k的有限生成域扩张.

Proof. 因为 K(X)是域,所以只要证 ι∗ 是非零同态且是满射, ι∗ 明显保持幺元. 而 ι∗ 是满射由 U 的非空开子集

上的正则函数都能对应 X 上某个有理函数便知.

Lemma 1.74. 设 k是域, X 是 k上古典簇且 Y ⊆ k
n 是仿射簇. 那么正则映射 φ : X → Y 的像集在 Y 中稠密

的充要条件是 φ∗ : O(Y ) → O(X)是单射.

Proof. 必要性: 如果 Imφ是 Y 的稠密子集,那么只要 f, g ∈ O(Y )满足 fφ = gφ,那么 f − g的零点集作为闭集

包含 Imφ,迫使 f = g. 充分性: 如果 φ∗ 是单射,假设 Imφ不是稠密的,那么存在 Y 的非空开子集和 Imφ不相
交,利用 Y 有拓扑基 {Y −V(f)|f ∈ k[x1, ..., xn]},存在非零多项式函数 f 使得 Y −V(f)非空以及和 Imφ的交
集为空. 于是 Imφ ⊆ V(f),即 fφ = 0,这和 φ∗是单射矛盾.

Remark 1.75. 如果 φ : X → Y 是仿射簇之间的正则映射,满足 φ∗ : O(Y ) → O(X)是满射,通过考察 X 上坐

标函数不难验证 φ是单射. 但 φ是单射一般无法保证 φ∗ 是满射. 一个特殊情况是当 X 是 Y 的闭子簇时,标准
嵌入 ι : X → Y 诱导的坐标代数之间的代数同态 ι∗是满射.
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Theorem1.76 ([Har77]). 设k是代数闭域,记由k上不可约古典簇和支配有理映射构成的范畴为k-Irr.Cl.Dom.
那么映射Homk-Irr.Cl.Dom(X,Y ) → Homk-CAlg(K(Y ),K(X))是双射. 且任何 k的有限生成域扩张都同构于某个

不可约古典簇的有理函数域. 特别地,从 k-Irr.Cl.Dom到 k-有限生成域扩张范畴的标准逆变函子是范畴对偶.

Proof. 记映射 Homk-Irr.Cl.Dom(X,Y ) → Homk-CAlg(K(Y ),K(X))为 F ,先考虑 Y 是仿射簇的情形.
如果支配有理映射 φ : X 99K Y 满足 φ∗ = 0. 设 Y ⊆ k

m,那么对 Y 上m个坐标投射函数 πi : Y → k(1 ≤
i ≤ m)有 πiφ = 0(作为有理函数). 因此存在 X 的非空开子集W 使得W 含于 φ的定义域并且 φ(W ) = 0. 于
是根据有理映射的定义便知 φ = 0,所以 F 是单射. 再说明 F 是满射. 任取 k-代数同态 ξ : K(Y ) → K(X),对 Y

上每个坐标投射函数 πi : Y → k,设 ξ([(Y, πi)]) = [(Ui, fi/gi)],这里 fi, gi均为 Ui ⊆ X 上多项式函数满足 gi在

Ui上处处非零. 于是可知对任何满足多项式 h ∈ I(Y ),由 ξ是代数同态得到

h(f1(p)/g1(p), ..., fm(p)/gm(p)) = 0, ∀p ∈ U1 ∩ · · · ∩ Um.

这一观察表明当 p ∈ U1 ∩ · · · ∩ Um时, (f1(p)/g1(p), ..., fm(p)/gm(p)) ∈ V(I(Y )) = Y . 因此

U1 ∩ U2 ∩ · · · ∩ Um → Y, p 7→ (f1(p)/g1(p), ..., fm(p)/gm(p))

定义出古典簇 U1 ∩ U2 ∩ · · · ∩ Um 到仿射簇 Y 的正则映射, 记作 ψ, 满足对任何 f ∈ O(Y ), fψ 对应的 Y 上

有理函数和 ψ 对应的 f 上有理函数在 ξ 下的作用一致 (回忆 [定理1.34]). 这一观察说明 ξ 是单射蕴含 ψ∗ :

O(Y ) → O(U1 ∩U2 ∩ · · · ∩Um)也是单射,进而应用 [引理1.74]知 Imψ是 Y 的稠密子集,于是 ψ对应的有理映

射 ψ : X 99K Y 是支配的且满足 ψ∗和 ξ在 [(Y, πi)], 1 ≤ i ≤ m上取值相同. 于是由 {πi : Y → k|1 ≤ i ≤ m}是
O(Y )作为 k-代数的一个生成元集以及 [定理1.68]得 ξ = ψ∗ = F (ψ),所以 F 是满射.

现在处理 Y 是不可约仿射古典簇的情形. 取定仿射簇 Y ′和正则同构 θ : Y → Y ′,那么有双射

θ∗ : Homk-Irr.Cl.Dom(X,Y ) → Homk-Irr.Cl.Dom(X,Y
′)

以及代数同构 θ∗ : K(Y ′) → K(Y ),它也导出双射 (θ∗)∗Homk-CAlg(K(Y ),K(X)) → Homk-CAlg(K(Y ′),K(X)),
于是由下图交换,前面的讨论说明 F̃ 是双射可得 F 是双射.

Homk-Irr.Cl.Dom(X,Y ) Homk-CAlg(K(Y ),K(X))

Homk-Irr.Cl.Dom(X,Y
′) Homk-CAlg(K(Y ′),K(X))

θ∗

F

(θ∗)∗

F̃

最后处理 Y 是一般的不可约古典簇的情形,这时可选取 Y 的仿射开子集 Y ′(回忆 [推论1.33]), [引理1.73]
指出标准嵌入 ι : Y ′ → Y 导出的有理函数域间代数同态是同构,于是仿照前面的讨论易证 F 是双射.
至此我们得到 k-Irr.Cl.Dom到 k-交换代数范畴的标准逆变函子是忠实满的. 最后我们证明任何 k的有限

生成域扩张同构于某个不可约古典簇的有理函数域来完成定理证明. 事实上,任给 k的有限生成域扩张 K,根
据 [定理1.68]都可以选取某个不可约仿射簇使得其有理函数域就是K.

现在我们给出不可约古典簇双有理等价的一些等价刻画.

Theorem 1.77 ([Har77]). 设 X,Y 是代数闭域 k上不可约古典簇,则以下三条等价:
(1)不可约簇 X 与 Y 双有理等价.
(2)存在 X 的非空开子集 U 和 Y 的非空开子集 V 作为古典簇同构.
(3)有理函数域 K(X) ∼= K(Y ).
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Proof. 通过 [定理1.76]立即看到 (1)与 (3)等价. 如果 X 和 Y 双有理等价,那么存在支配有理映射 φ : X 99K
Y, ψ : Y 99K X使得 ψφ = idX 且 φψ = idY . 设 φ的定义域是U , ψ的定义域是 V ,那么存在 φ−1(V )的非空开

子集W ⊆ U 使得 ψφ|W = idW . 注意到 φ(W )是 Y 的稠密子集 (因为 Imφ = φ(U ) = φ(W ) ⊆ φ(W )),所以
W ∩φ−1(V )是 V 的非空开子集,同理 V ∩ψ−1(W )是 V 的非空开子集. 由 φψ = idY 知存在 V ∩ψ−1(W )的非

空开子集 T 使得 φψ|T = idT . 进而 φ与 ψ给出了 φ−1(T )与 T 间作为古典簇的同构. 现取 U = φ−1(T ), V = T

便得 U ∼= V ,这证明了 (1)⇒(2). 而 (2)⇒(1)由有理映射及其合成的定义立即得到.

1.7 古典簇的局部环

设X 是域 k上古典簇, p ∈ X . 考虑Bp = {(U, f)|p ∈ U ⊆ X是开邻域且f是U上正则函数},与有理函数定
义不同的是这里考虑的二元组 (U, f)中 U 都是给定点的开邻域. 对 (U, f), (V, g) ∈ Bp,定义

(U, f) ∼ (V, g) ⇔存在p的开邻域W ⊆ U ∩ V使得f |W = g|W .

这给出 Bp 上的等价关系,定义 OX,p = Bp/ ∼,其上有自然的 k-交换代数结构,称为 X 在 p处的局部环或 X

在 p处的正则函数芽环. 如果 f : U → k是 p的开邻域 U 上的正则函数,则称 [(U, f)]是 f 在 p处的正则函数

芽. 对古典簇 X 在 p处的局部环 OX,p,如果所有 p的开邻域上所有在 p处取值为零的正则函数的函数芽构成

的集合mp,那么mp是OX,p唯一的极大理想 (易知在 p处取值非零的正则函数芽是可逆元),故OX,p是局部环.

Proposition 1.78 (仿射簇在给定点处局部环的局部化实现, [Har77]). 设 X ⊆ k
n是域 k上仿射簇, p ∈ X . Mp

是 O(X)中所有在 p处取值为零的正则函数构成的极大理想. 那么作为 k-交换代数, OX,p
∼= O(X)Mp

.

Proof. 命 λ : O(X) → OX,p, f 7→ [(X, f)],这是 k-交换代数同态,并且任何 O(X)−Mp中的正则函数都在 λ作

用下可逆. 任取 [(U, f)] ∈ OX,p,存在 p的开邻域W ⊆ U ,使得 f 在W 上能够表示为多项式之商,设有多项式
g, h使得 h在W 上处处非零且作为W 上函数, f = g/h,那么 [(U, f)] = λ(g)λ(h)−1. 所以要证明 λ是局部化

映射只需再说明 Kerλ = {f ∈ O(X)|f和O(X)−Mp中某个正则函数的乘积是零}. 如果正则函数 g ∈ O(X)满

足 g(p) 6= 0,由 g 的连续性知存在 p的开邻域 U 使得 g 在 U 上处处非零,因此一旦 f ∈ O(X)满足 fg = 0,那
么 f 在 p处的正则函数芽是零, 即 f ∈ Kerλ. 反之, 如果存在 p的开邻域 U 使得 f 在 U 上为零, 那么可选取
h ∈ k[x1, ..., xn]使得 p ∈ X − V(h) ⊆ U ,因此 h作为 X 上正则函数在 U 外取值均为零,进而 fh = 0.

如果 R是整区, Q是其商域,那么有标准嵌入

θ : R→
∏

m∈maxSpecR
Rm, a 7→ (a/1)m∈maxSpecR,

特别地,如果将 Rm 和其在 Q中的像视作等同,那么 θ给出 R到所有 Rm 之交的单射,这也是满射: 如果 q ∈ Q

满足在所有 Rm 内,命 I = {a ∈ R|aq ∈ R},那么 I 是 R的理想. 假设 q /∈ R,那么这是 R的真理想. 进而存在
R的极大理想 m使得 I ⊆ m. 于是 q /∈ Rm,否则 I ∩ (R−m) 6= ∅. 因此 q ∈ R. 局限在仿射簇场景我们得到

Proposition 1.79 ([Hum75]). 设 X 是代数闭域上不可约仿射簇,M 是 O(X)的极大谱,那么

A(X) ∼= O(X) =
⋂

m∈maxSpecO(X)

O(X)m.
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Remark 1.80. 根据 [命题1.78]和 [命题1.79],代数闭域 k上仿射簇 X 的正则函数代数 O(X) = ∩p∈XOX,p,这
说明不可约仿射簇 X 被所有局部环 OX,p决定 (因为这决定了 X 的坐标代数).

设 X 是域 k上古典簇 (即拟仿射簇或拟射影簇), O(X)是其上正则函数环 (见 [定义1.17]和 [定义1.22]),
那么对任何 X 的开子集 U , U 依然是古典簇并且任何 f ∈ O(X)在 U 上的限制给出 U 上正则函数. 对拓扑空
间 X ,记 X 所有开子集关于包含关系构成的偏序范畴为 Top(X),称逆变函子 F : TopX → k-CAlg为 X 上

交换 k-代数预层. 对X 每个开子集 U ,也记F (U)为 Γ(U,F ),其中的元素称为F 在 U 上的截面. Γ(X,F )中

的元素被称为 F 的整体截面. 对开子集链 V ⊆ U , 也将 V ⊆ U 对应的代数同态 ResUV : Γ(U,F ) → Γ(V,F )

称为限制同态,每个 f ∈ Γ(U,F )在限制同态下的像常简记为 f |V . 对任给 p ∈ X , X 所有含 p点的开子集关于

集合反向包含关系 ⊇构成非空偏序集 (即 p的开邻域 V, U 满足 U ≤ V 当且仅当 V ⊆ U). 那么对 p的开邻域

V ⊆ U ,对应映射 ResUV : F (U) → F (V ). 因此我们得到 p处开邻域全体给出的偏序范畴到 k-CAlg的函子,这
给出正向系 {F (U),ResUV }p∈U . 我们马上说明该正向系的正向极限存在,称为F 在 p处的茎,记作Fp.

Lemma 1.81 ([Har77]). 设 X 是拓扑空间, F : Top(X) → k-CAlg 是 X 上交换 k-代数预层. 那么对任何
p ∈ X , F 在 p处的茎Fp = lim−→p∈U

F (U)存在.

Proof. 考虑集合 T = {(U, s)|X ⊇ U是含p的开邻域, s ∈ F (U)},在 T 上定义二元关系∼: (U, s) ∼ (V, t)当且仅

当存在 x的开邻域W ⊆ U ∩ V 使得 ResUW (s) = ResVW (t). 容易验证这是 T 上等价关系. 考虑商集Fp = T/ ∼.
那么可在 T/ ∼上自然定义出 k-代数结构使得 T/ ∼成为交换代数. 对每个 X 的开子集 U , F (U)到 Fp 都有

自然映射 αU : F (U) → Fp, f 7→ [(U, f)]. 易验证 (Fp, {αU |p ∈ U是开邻域})就是 lim−→p∈U
F (U).

拓扑空间 X 上交换 k-代数预层 F : TopX → k-CAlg被称为交换 k-代数层,如果 F 满足下述“粘接条

件”: 对任何 X 的开子集 U 和 U 的开覆盖 U = ∪i∈IUi 以及 si ∈ Γ(Ui,F ), i ∈ I ,只要 si|Ui∩Uj
= sj |Ui∩Uj

对

任何满足 Ui ∩ Uj 非空的指标 i, j ∈ I 成立,那么存在唯一的 s ∈ Γ(U,F )使得 s|Ui
= si, ∀i ∈ I . 之后我们会讨

论拓扑空间上更一般的集合 (预)层,见 [定义1.88]和 [定义1.92].
如果F : TopX → k-CAlg是 X 上交换代数层,则对 X 的任何开子集 U ,可如下定义出 U 上代数层F |U :

对 U 的任何开子集 W , 命 F |U (W ) = F (W ), 对 U 的开子集链 W ′ ⊆ W , 对应 F 作为逆变函子的限制映射

ResWW ′ ,那么容易看出F |U : Top(U) → k-CAlg定义了 U 上交换 k-代数层.

Lemma 1.82 ([Hum75]). 设 X 是域 k上古典簇,如下定义逆变函子 OX : Top(X) → k-CAlg: 对 X 的任何非

空开子集 U ,定义 OX(U)为 U 作为古典簇的正则函数环,约定 OX(∅) = 0;对X 的任何开子集链 V ⊆ U ,定义
限制同态 ResUV : OX(U) → OX(V ), f 7→ f |V 是限制映射诱导的自然同态. 那么
(1)OX : Top(X) → k-CAlg是 X 上交换 k-代数层,其整体截面全体 Γ(X,OX)就是 X 上正则函数代数.
(2)交换代数层 OX : Top(X) → k-CAlg在每点 p处的茎就是古典簇 X 在 p处的局部环.

Proof. 因为古典簇上正则函数的定义是局部的,所以 OX : Top(X) → k-CAlg明显是定义合理的交换 k-代数
预层. 如果X 有非空开子集 U , U 的开覆盖 U = ∪i∈IUi以及 si ∈ Γ(Ui,F ), i ∈ I 满足对所有使 Ui ∩Uj 非空指
标 i, j ∈ I 有 si|Ui∩Uj

= sj |Ui∩Uj
,定义 s : U → k为: 对任何 x ∈ U ,设 i0 ∈ I 满足 x ∈ Ui0 ,置 s(x) = si0(x),

那么 s明显是定义合理的映射,并且由每个 si 在 Ui 上正则知 s ∈ Γ(U,OX). 并且易见 s|Ui
= si, ∀i ∈ I . 由 U

被 {Ui}i∈I 覆盖知满足 s|Ui
= si, ∀i ∈ I 的 U 上正则函数 s是唯一的. 因此 OX 是X 上交换代数层,这就证明了

(1). (2)根据古典簇在给定点处局部环的定义以及 [引理1.98]的证明过程立即得到.
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Remark 1.83. 将古典簇 X 通过在开子集上取正则函数环得到的交换代数层 OX : Top(X) → k-CAlg称为 X

的正则函数环层. 因此 X 的正则函数环层在每点处的茎就是 X 在给定点处的局部环,即正则函数环层 OX 携

带X 所有点处局部环的信息. 此外,不难看到古典簇X 上的正则函数环层 OX ,能够限制在X 的任何非空开子

集 U(这也是拟仿射簇)上成为 U 上的正则函数环层. 这是特殊的限制层,见 [例1.94].

Definition 1.84 ([Hum75]). 如果拓扑空间X上的交换 k-代数层OX 满足每个X的开子集U 对应的交换代数

是 U 到 k的所有映射构成交换代数的 k-子代数,并且X 的开子集链 V ⊆ U 对应的代数同态 ResUV : OX(U) →
OX(V )是通常的限制映射,那么称 OX 是 X 上的 k-值函数层. 这时 (X,OX)是特殊的赋环空间, [定义1.96].

Example 1.85 (k-值函数层的限制, [Spr98]). 设 (X,OX)是带有 k-值函数层的拓扑空间. 并设 Y 是 X 的子集,
那么对 Y 的任何开子集 U(这里 Y 考虑子空间拓扑),可以定义

OX |Y (U) := {f : U → k |存在覆盖U的X的开子集族{Ui}i∈Γ和fi ∈ OX(Ui), i ∈ Γ使得f |Ui∩U = fi|Ui∩U}.

注意到当 Y 是 X 的开子集时, OX |Y (U)就是 OX(Y ∩ U). 那么 OX |Y 定义了 Y 上 k-值函数层 (预层由定义不
难看到,粘接条件直接验证),称为函数层 OX 在 Y 上的限制. 此外,根据函数层 OX |Y 的定义,对X 的任何开子

集 U 和 f ∈ OX(U),因为 U ∩ Y 是 Y 的开子集,所以 f |U∩Y ∈ OX |Y (U).
例如,如果 (X,OX)是带上正则函数环层的古典簇,那么 X 的任何局部闭子集 Y (某个开子集和某个闭子

集的交)依然是古典簇且 OX |Y 就是古典簇 Y 的正则函数环层 OY .

我们可以对带有 k-值函数层的拓扑空间谈论态射与同构. 设 (X,OX) 和 (Y,OY ) 都是带有函数层的拓扑

空间且 φ : X → Y 是连续映射. 如果 φ 满足对 Y 的任何开子集 V 和 f ∈ OY (V ), fφ : φ−1(V ) → k

是 OX(φ
−1(V )) 中的函数, 则称 φ 是带有 k-值函数层的拓扑空间 (X,OX) 到 (Y,OY ) 的态射. 那么我们得到

带有 k-值函数层的拓扑空间和它们之间的态射构成的范畴 (事实上, 这可以视作赋环空间范畴的子范畴, [定
义1.111]), 于是我们可以谈论同构. 在 [例1.85] 中我们看到带有 k-值函数层的拓扑空间 (X,OX) 关于任何子

集 Y ,将 Y 视作子空间后可以得到 Y 上的函数层 OX |Y ,这时 (Y,OX |Y )到 (X,OX)的标准嵌入就是作为带有

k-值函数层的拓扑空间之间的态射.

Remark 1.86. 如果 φ : (X,OX) → (Y,OY )是同构,那么 φ : X → Y 是拓扑同胚并且对 Y 的任何开子集 V ,映
射 (φ∗)V : OY (V ) → OX(φ

−1(V )), f 7→ fφ是交换代数同构. 实际上这时 φ∗ 给出 OY 到推出层 φ∗OX 的同构,
并且这里的同构还是作为赋环空间的同构, [定义1.111].

Example 1.87 (Poisson 函数层, [Pol97]). 设 (X,OX) 是带有 k-值函数层的拓扑空间. 如果每个 X 的开子集

U 都对应 OX(U) 上的 Poisson 代数结构 πU = {−,−}U : OX(U) ⊗ OX(U) → OX(U) 并且对任何开子集链

V ⊆ U ,关于函数的限制有交换图:

OX(U)⊗ OX(U) OX(U)

OX(V )⊗ OX(V ) OX(V )

πU

ResUV ⊗ResUV ResUV
πV

我们称 π = {πU}U∈obTop(X)是 k-值函数层 OX 上的 Poisson结构.
带上 Poisson结构 π的 k-值函数层 OX 称为 Poisson函数层.
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1.8 补充: 层的基本概念

之前我们介绍了交换 k-代数 (预)层的概念,并在 [引理1.82]看到对 k上古典簇X 每个开子集取正则函数

环能够自然产生交换 k-代数层 OX(X 上的正则函数环层). 本节我们记录拓扑空间上的集合/Abel群 (预)层
的一般性基本理论. 古典簇上正则函数环层自然能够视作特殊的 Abel群层.

Definition 1.88 ([GW20]). 设 X 是拓扑空间, Sets是集合范畴. 记 Top(X)是由 X 上全体开集关于集合包含

关系诱导的偏序范畴,称 Top(X)到 Sets的逆变函子是 X 上取值在集合范畴中的预层或集合预层.

Remark 1.89. 在这里我们约定一些记号与术语. 设F : Top(X) → Sets是集合预层. 如果 V, U 是X 的开子集

满足 V ⊆ U ,那么这对应从集合F (U)到F (V )的映射,记作 ResUV : F (U) → F (V ),常称为 (U 在 V 上的)限
制态射. 如果 V ⊆ U 是 X 的开子集且 f ∈ F (U),常把 ResUV (f)记作 f |V . 对 X 的每个开子集 U ,也把 F (U)

记 Γ(U,F ),称其中的元素为F 在 U 上的截面. 将 Γ(X,F )中元素称为F 的整体截面.

Example 1.90. 设 X 是域 k上古典簇,那么 [引理1.82]给出的逆变函子 OX 是集合预层.

Example 1.91. 设 X 是拓扑空间,记 C (U)是 X 的开子集 U 上的实值连续函数全体构成的连续函数环. 如果
V, U 是 X 的开子集满足 V ⊆ U , 记 ResUV : C (U) → C (V ), f 7→ f |V . 则可定义出逆变函子 C : Top(X) →
CRing. 称 C 为 X 上连续函数环预层,其整体截面全体 Γ(X,C ) = C (X)是 X 的连续函数环.

粗糙地说,层相比于预层所多加的条件即要求几何对象相容的“局部数据”可以唯一地得到“整体数据”.

Definition 1.92 ([GW20]). 设 X 是拓扑空间, F : Top(X) → Sets 是集合预层. 如果 F 满足粘接条件, 即
对 X 的任何开子集 U , U 的开覆盖 {Ui|i ∈ I}(这里开覆盖指所有 Ui 之并恰为 U)以及 si ∈ Γ(Ui,F )(i ∈ I),
只要 si|Ui∩Uj

= sj |Ui∩Uj
, ∀i, j ∈ I 对任何满足 Ui ∩ Uj 非空的指标 i, j 成立, 就存在唯一的 s ∈ Γ(U,F )使得

s|Ui
= si, ∀i ∈ I ,则称 F 为 X 上的层. 设 F 是 X 上的层. 如果层 F ′ 满足对 X 的任何开子集 U , F ′(U)是

F (U)的子集且F ′的限制态射来自F 上限制态射的限制,那么称F ′是F 的子层 (类似定义子预层).

Remark 1.93. 如果F 是拓扑空间X 上层,那么取 U = Ui = I = ∅,考虑 U 的开覆盖 {Ui}i∈I 并利用层的定义
中的粘接条件可证得F (∅)是单点集. 这也解释了 [引理1.82]中对 OX(∅)的约定.

Example 1.94. 设F 是拓扑空间 X 上取值在 Sets中的层,固定 X 的开子集 U ,那么 U 的开子集均为 X 的开

子集,于是可限制F 定义出层F |U : Top(U) → Sets,称为F 在开子集 U 上的限制.

Example 1.95 (摩天大楼层, [Sta25]). 设 X 是拓扑空间, x ∈ X , A 是 Abel 群. 对 X 的每个开子集 U , 定义
ix,∗A(U) 为: 当 x ∈ U 时, ix,∗A(U) = A; 否则 ix,∗A(U) = 0. 对开子集链 V ⊆ U , 如果 x /∈ U 或 x /∈ V , 那
么 ResUV = 0. 当 x ∈ V 时, ResUV 定义为 A上恒等映射. 易见 ix,∗A定义了 X 上取值在 Abel群的预层. 它也
是 X 上层: 任给 X 的开子集 U , U 的开覆盖 {Ui|i ∈ I}(满足 U = ∪i∈IUi), 并设 si ∈ Γ(Ui, ix,∗A)(i ∈ I) 满

足对任何满足 Ui ∩ Uj 非空的指标 i, j 有 si|Ui∩Uj
= sj |Ui∩Uj

, ∀i, j ∈ I . 下面说明存在唯一的 s ∈ Γ(U, ix,∗A)

使得 s|Ui
= si, ∀i ∈ I . 当 x /∈ U 时, 结论明显成立. 现在设 x ∈ U . 那么存在 i0 ∈ I 使得 x ∈ Ui0 . 定义

s = si0 ∈ Γ(Ui0 , ix,∗A) = A,那么 s|Ui
= si, ∀i ∈ I 并且 s明显是唯一的. 由此得到 ix,∗A是 X 上 Abel群层,称

为 (Abel群 A决定的)摩天大楼层.

根据层的定义不难看出 [例1.91]中定义的连续函数环预层是层 (它也可以视作交换 R-代数层). 称取值在
Ab中的 (预)层为 Abel群 (预)层,取值在 CRing中的 (预)层为环 (预)层. 域上交换代数层自然都是环层,
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因此 [例1.90]和 [例1.91]都给出相应空间上环层. 当谈论 Abel群 (预)层F 的子层F ′时,我们要求拓扑空间
X 每个开子集 U 上, F ′(U)是F (U)的子群.

Definition 1.96 ([GW20]). 设 X 是拓扑空间, OX 是其上环层. 称 (X,OX)是赋环空间, OX 被称为其结构层.

Example 1.97. 设 X 是域 k上古典簇, OX 是正则函数环层,那么 (X,OX)是赋环空间.

和交换代数预层场景相同地, 我们能够对集合预层引入“茎”的概念: 设 X 是拓扑空间, p ∈ X , 且 F :

Top(X) → Sets是集合预层. 那么 X 的所有包含点 p的开子集关于集合 (反向)包含关系 ⊇构成非空偏序集
(即 p的开邻域V, U满足U ≤ V 当且仅当V ⊆ U). 那么对 p的开邻域V ⊆ U ,对应映射ResUV : F (U) → F (V ).
因此我们得到 p处开邻域全体给出的偏序范畴到 Sets的函子, 这给出正向系 {F (U),ResUV }p∈U , 称为 F 在 p

处的茎,记作 Fp. 考虑集合 T = {(U, s)|U是含p的开邻域, s ∈ F (U)},在 T 上定义二元关系 ∼: (U, s) ∼ (V, t)

当且仅当存在 x 的开邻域 W ⊆ U ∩ V 使得 ResUW (s) = ResVW (t). 容易验证这是 T 上等价关系. 考虑商集
Fp = T/ ∼. 无论 C 是模范畴或是 CRing,都易在 T/ ∼上定义出相应代数结构. 对每个 X 的开子集 U , F (U)

到 Fp 都有自然映射 αU : F (U) → Fp, f 7→ [(U, f)]. 易验证 (Fp, {αU |p ∈ U是开邻域}) 就是 F 在 p 处的

茎. 以后将 Fp 与此具体构造视作等同, 由此易见 X 每个开子集 U 上的截面 s ∈ Γ(U,F ) 对应茎 Fp 中元素

[(U, s)],称为 s在点 p处的芽. 我们总结为

Lemma 1.98 ([GW20]). 设 X 是拓扑空间, F : Top(X) → Sets是 X 上集合预层. 那么对任何 p ∈ X , F 在 p

处的茎Fp = lim−→p∈U
F (U)存在. 并且当F 是取值在 Abel群范畴/交换环范畴的预层时, Fp 上有自然的加法

群/交换环结构使之成为正向系 {F (U),ResUV }p∈U 在 Abel群范畴/交换环范畴中的正向极限.

赋环空间 (X,OX)在 p ∈ X 处的茎记作 OX,p. 如果赋环空间 (X,OX)满足对所有 p ∈ X , OX,p 是局部环,
则称 (X,OX)为局部赋环空间.

Example 1.99. 设 X 是域 k上古典簇, OX 是正则函数环层,之前我们已经看到对每个 p ∈ X ,茎 OX,p 就是 X

在 p处的局部环,所有在 p处取值为零的函数芽构成 OX,p唯一的极大理想. 因此 (X,OX)是局部赋环空间.

Example 1.100 (摩天大楼层的茎). 设 X 是拓扑空间, A是 Abel群且 x ∈ X . 考虑 [例1.95]中定义的摩天大楼
层 ix,∗A. 那么对任何 p 6= x ∈ X 有 (ix,∗A)p = 0. 而 (ix,∗A)x = A.

回忆如果F ,G 是拓扑空间X上集合预层,那么F 到 G 的一个态射是指逆变函子F 到 G 的自然变换. 因
此F 到 G 的态射是满足下述条件的映射

η : obTop(X) →
⋃

U∈obTop(X)

HomC(F (U),G (U)), U 7→ ηU :

对所有 X 的开子集链 V ⊆ U ,下图交换:

F (U) G (U)

F (V ) G (V )

ResUV

ηU

ResUV
ηV

因为 Top(X)是小范畴,所以 F 到 G 的所有态射构成的类是集合. 可用自然变换的合成来定义预层间的合成
来得到 X 上的集合预层范畴. 类似地,有 X 上 Abel群预层范畴,记作 Psh(X,Ab). 称 X 上所有 Abel群层构
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成的 Abel群预层范畴的全子范畴为 X 上的 Abel群层范畴,记作 Sh(X,Ab). 易见 PSh(X,Ab)是加性范畴:
零对象是将所有开子集对应到平凡群的预层; 预层的态射有自然的加法使得态射的合成与加法具有分配律; 任
意两个 Abel群预层可自然构造直和/直积. 可直接验证 Abel群层的直和/直积也是 Abel群层. 至此我们看到
Psh(X,Ab)和 Sh(X,Ab)都是加性范畴. 事实上,对拟序集 I 上取值在给定余完备 Abel范畴中的正向系范畴
Dir(I)总是 Abel范畴,由此也可以看到 Psh(X,Ab)是 Abel范畴.
设F 与 G 是拓扑空间 X 上取值在 Abel群范畴中的层, η : F → G 是态射,那么根据正向极限的定义,对

每个点 p ∈ X ,层间态射 η诱导茎间态射 ηp : Fp → Gp. ηp是使得下图交换的唯一态射:

Fp Gp

F (U) G (U)

F (V ) G (V )

ηp

ResUV

ηU

αU

ResUV

βU

ηV

αV βV

其中 V ⊆ U 是 X 的任意含 p的开子集链. 元素层面, ηp将每个Fp中形如 [(U, s)]的元素映至 [(U, ηU (s))].

Proposition 1.101 ([GW20]). 设 F 与 G 是拓扑空间 X 上 Abel群层,那么态射 η : F → G 是同构的充要条

件是对任何 p ∈ X , η诱导的茎间态射 ηp : Fp → Gp是同构.

Proof. 必要性明显, 只需验证充分性. 设 ηp : Fp → Gp 对所有 p ∈ X 是同构, 需要验证对 X 的每个开子

集 U , ηU : F (U) → G (U) 是同构. 假设 s ∈ F (U) 满足 ηU (s) = 0. 固定 p ∈ X , 则 [(U, s)] ∈ Fp 满足

[(U, ηU (s))] = 0, 故由 ηp 是单射知存在 p 的开邻域 V ⊆ U 使得 ResUV (s) = 0. 于是利用层的粘接条件得到
s = 0,这说明 ηU 是单射. 最后说明 ηU 是满射,任取 t ∈ G (U). 对每个 p ∈ X ,利用 ηp 满得存在 [(Vp, sp)] ∈ Fp

使得 [(V, ηV (sp))] = [(U, t)],其中 Vp 是 p的开邻域. 用 U ∩ Vp 更小的含 p开子集替换 Vp 可设 ηVp
(sp) = t|Vp

.
因为 {Vp}p∈U 是 U 的开覆盖,所以粘接条件保证存在 s ∈ F (U)使得 s|Vp

= sp. 于是 ηU (s)在 Vp 上的限制就

是 t|Vp
. 现在应用粘接条件中的唯一性便得到 ηU (s) = t,这说明 ηU 是满射.

在 [命题1.101]单射部分的讨论使我们能够得到下述观察.

Lemma 1.102 ([GW20]). 设F 是拓扑空间 X 上 Abel群层, U ⊆ X 是非空开子集. 那么

νU : F (U) →
∏
p∈U

Fp, s 7→ ([(U, s)])p∈U

是单射. 特别地,如果 G 也是 X 上 Abel群层, η, ξ : F → G 是态射,那么 η = ξ当且仅当 ηp = ξp, ∀p ∈ X .

Proof. 如果 s, t ∈ F (U)满足在每个 p ∈ U 处对应的芽相同,那么存在 p的开邻域Wp ⊆ U 使得 s|Wp
= t|Wp

.
现在 {Wp}p∈U 给出 U 的开覆盖,因此由层满足粘接条件得到 s = t.
现在设 η, ξ : F → G 都是 X 上层间态射. 命 φ = η − ξ,那么我们有交换图

F (U)
∏
p∈U

Fp

G (U)
∏
p∈U

Gp

νU

φ
(φp)p∈U

µU
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由上图的交换性以及 µU 是单射可知当 ηp = ξp, ∀p ∈ X 时, η = ξ. 反之, η = ξ当然能得到 ηp = ξp, ∀p ∈ X .

Corollary 1.103 ([GW20]). 设F ,G 是拓扑空间 X 上 Abel群层, η : F → G 是态射. 那么以下等价:
(1)对 X 的任何开子集 U , ηU : F (U) → G (U)是单射.
(2)对每个 p ∈ X , ηp : Fp → Gp是单射.
(3)对任何层的态射 φ,ψ : H → F , ηφ = ηψ蕴含 φ = ψ.

Proof. (1)⇒(2): 先固定 p ∈ X . 如果 sp = [(U, s)], tp = [(V, t)] ∈ Fp 满足 ηp(sp) = ηp(tp),那么存在 p的开邻

域Wp 使得 ηp(sp)|Wp
= ηp(tp)|Wp

. 这说明 ηU∩V (s|U∩V )|Wp
= ηU∩V (t|U∩V )|Wp

. 因为 {U ∩ V ∩Wp}p∈X 定义了
U∩V 的开覆盖,所以由层满足粘接条件可知 ηU∩V (s|U∩V ) = ηU∩V (t|U∩V ). 而 ηU∩V 是单射表明 s|U∩V = t|U∩V .
因为 U ∩ V 是含 p的开邻域,所以立即得到 sp = tp. 这证明了 ηp是单射.

(2)⇒(1): 根据 [引理1.102],对 X 的任何开子集 U ,我们有下述交换图,满足上下两行是单射:

F (U)
∏
p∈U

Fp

G (U)
∏
p∈U

Gp

νU

η
(ηp)p∈U

µU

所以当每个 ηp都是单射时,我们能够得到每个 ηU 是单射.
(1)⇒(3)是明显的,下证 (3)⇒(1): 将每个开子集 U 对应到加群 KerηU ,将开子集链 V ⊆ U 对应到 KerηU

到 KerηV 的自然的限制映射,由F ,G 均为层可直接验证 Kerη定义了X上的层. 如果存在某个X的开子集 U0

使得 ηU0
不是单射,那么 KerηU0

6= 0. 于是,命 ι : Kerη → F 是标准嵌入, 0 : Kerη → F 是零同态诱导的态射,
我们有 ηι = η0. 但 ι 6= 0,这和 (3)的假设矛盾.

Remark 1.104. 根据 [推论1.103], Sh(X,Ab)中的态射 η是monic态当且仅当X 的任何开子集 U 对应的加群

同态 ηU 是单射. 但 Sh(X,Ab)中的 epic态没有相应刻画.

在 [推论1.103]证明过程中我们看到: 如果拓扑空间 X 上取值在 Abel群范畴的预层 F 与 G 间有态射 η,
则将每个开子集 U 对应到加群 KerηU ,将开子集链 V ⊆ U 对应到 KerηU 到 KerηV 的自然的限制映射,那么可
得预层 Kerη. 若进一步要求F ,G 均为层,则 Kerη也是层. 类似地,将X 的每个开子集 U 对应到加群 CokerηU
可自然地定义预层的余核 Cokerη. 但当 F ,G 都是层时,一般无法保证预层的余核是层 (这也说明 Sh(X,Ab)
是 PSh(X,Ab)的加性子范畴,却不是 Abel子范畴). 层范畴中态射余核的构造依赖于层化.

Proposition 1.105 (层化, [GW20]). 设 F 是拓扑空间 X 上取值在 Abel 群范畴的预层. 则存在 X 上取值在

Abel群范畴的层 F̃ 和预层的态射 iF : F → F̃ 使得 (F̃ , iF )满足下述泛性质: 对任何 X 上取值在 Abel群范
畴的层 G 和预层态射 φ : F → G ,存在唯一的态射 φ̃ : F̃ → G 使得 φ̃iF = φ,即下图交换:

F F̃

G

φ

iF

φ̃

易见 (F̃ , iF )在同构意义下唯一,称为F 的层化或伴随层. 并且这时预层态射 iF 在每点 p ∈ X 处诱导的茎层

面的态射 (iF )p : Fp → (F̃ )p是同构.
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Proof. 由泛性质的同构唯一性知只需验证其存在性. 任给 X 的开子集 U ,定义 F̃ (U)为

F̃ (U) = {(sx)x∈U ∈
∏
x∈U

Fx|对任给x ∈ U,存在x的开邻域W ⊆ U与t ∈ F (W )使得sw = tw, ∀w ∈W},

那么 F̃ (U)上有自然的加群结构且对任何开子集链 V ⊆ U , F̃ (U)中每个元素 (sx)x∈U 诱导 (sx)x∈V ∈ F̃ (V ),
这给出标准限制映射 τUV : F̃ (U) → F̃ (V ). 由此可定义逆变函子 F̃ : Top(X) → Ab. 下面验证X 上预层 F̃ 是

层. 任取开子集 U 和其开覆盖 {Ui|i ∈ I}, fi ∈ F̃ (Ui), i ∈ I 使得 fi|Ui∩Uj
= fj |Ui∩Uj

,那么定义 f = (sx)x∈U 满

足若 x ∈ Ui,则 sx为 fi在指标 x处分量. 由 F̃ 的定义易知 f = (sx)x∈U 定义合理且 f ∈ F̃ (U). 根据 f 的构造

立即得到 f |Ui
= fi, ∀i ∈ I . 如果还有 g ∈ F̃ (U)满足 g|Ui

= fi, ∀i ∈ I . 那么对每个 x ∈ U ,设 x ∈ Uj ,则 g在 x

处分量与 f 在 x处分量一致,这说明 f 是唯一满足限制在每个 Ui 上是 fi 的元素,因此 F̃ 是层. 下面定义预层
的态射 iF : F → F̃ 为将每个 X 的开子集 U 映至加群同态 iF ,U : F (U) → F̃ , s 7→ (sx)x∈U . 根据 F̃ (U)的定

义,明显 (sx)x∈U ∈ F̃ (U), ∀s ∈ F (U)(取W = U, t = s即可). 所以 iF ,U 是定义合理的加群同态,并且易见对
任何 X 的开子集链 V ⊆ U 有下图交换:

F (U) F̃ (U)

F (V ) F̃ (V )

ResUV

iF,U

τU
V

iF,V

所以 iF : F → F̃ 是预层间自然变换. 任给预层态射 φ : F → G ,对每个 x ∈ X , φ诱导茎间同态 φx : Fx →
Gx, [(T, v)] 7→ [(T, φT (v))]. 下面需要构造满足 φ̃iF = φ的态射 φ̃ : F̃ → G . 任给开子集 U 和 (sx)x∈U ∈ F̃ (U).
对每个 x ∈ U , 根据 F̃ (U) 的定义, 存在 x 的开邻域 Wx ⊆ U 和 t(x) ∈ F (Wx) 使得 t(x)w = sw, ∀w ∈ Wx.
因此如果 x, y ∈ U 满足 Wx ∩Wy 6= ∅, 那么 t(x)和 t(y)在 Wx ∩Wy 中每点处的芽相同. 因此 φWx

(t(x))与

φWy
(t(y))在Wx ∩Wy 中每点处的芽相同,利用 G 的粘接条件便知 φWx

(t(x))与 φWy
(t(y))在Wx ∩Wy 上的限

制相同. 所以由 {Wx}x∈U 构成 U 的开覆盖可知存在唯一的 φ̃((sx)x∈U ) ∈ G (U)使得 φ̃((sx)x∈U )在每个开子集

Wx 上的限制是 φWx
(t(x))(并且可直接验证 φ̃((sx)x∈U )的构造不依赖于满足 F̃ (U)定义的开子集族 {Wx}x∈U

的选取). 易验证 φ̃U : F̃ (U) → G (U), (sx)x∈U 7→ φ̃((sx)x∈U ) 是定义合理的加群同态并且 φ̃ 为层间态射. 对
每个 s ∈ F (U), 由 φ̃U 的定义合理性便知 φU (s) = φ̃((sx)x∈U ), 这说明 φ̃iF = φ. 最后证明满足 φ̃iF = φ

的态射 φ̃ 是唯一的. 如果还有态射 ψ : F̃ → G 满足 ψiF = φ̃iF , 那么对任何开子集 U 和 U 上截面 s 总有

φ̃U ((sx)x∈U ) = ψU ((sx)x∈U ). 对任给 (tx)x∈U ∈ F̃ (U),每个 x ∈ U 都存在开邻域Wx 以及Wx 上截面 g(x)使

得 g(x)w = tw, ∀w ∈ Wx. 下面说明 ψU ((sx)x∈U ) = φ̃U ((sx)x∈U ). 这时 ψWx
((tw)w∈Wx

) = ψWx
((g(x))w∈Wx

) =

φ̃Wx
((g(x))w∈Wx

) = φ̃Wx
((tw)w∈Wx

), 因此 ψU ((sx)x∈U ) 和 φ̃U ((sx)x∈U ) 在每个开子集 Wx 上限制相同. 由于
{Wx}x∈U 是 U 的开覆盖,所以利用 G 的粘接性质立即得到 ψU ((sx)x∈U ) = φ̃U ((sx)x∈U ). 进而 φ̃U = ψU 对 X

的任何开子集 U 成立. 由此得到 φ̃的唯一性.
对每个 p ∈ X ,可直接验证 (iF )p : Fp → (F̃ )p是双射来得到茎层面的同构.

Remark 1.106. 如果F 本身就是 X 上层,取 F̃ = F 以及 iF 为恒等函子便知其层化同构于自身.

Remark 1.107. 预层F 的伴随层 (F̃ , iF )即预层F 到嵌入函子 Sh(X,Ab) → PSh(X,Ab)的泛性质. 对任何
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F ∈ PSh(X,Ab),取定层化 (F̃ , iF ),对任何预层间态射 φ : F → G ,记使得

F F̃

G G̃

iF

φ φ̃

iG

交换的唯一的层间态射为 φ̃ : F̃ → G̃ . 那么我们定义出函子 ˜(−) : PSh(X,Ab) → Sh(X,Ab),称之为层化函子.
那么对任何 (取值在Ab的)预层F ,层 G 有加群同构 ζF ,G : HomSh(X,Ab)(F̃ ,G ) → HomPSh(X,Ab)(F ,G ), ψ 7→
ψiF . 于是对任何预层态射 f : F → F ′和层间态射 g : G → G ′有交换图:

HomSh(X,Ab)(F̃ ,G ) HomPSh(X,Ab)(F ,G )

HomSh(X,Ab)(F̃ ′,G ) HomPSh(X,Ab)(F
′,G )

ζF,G

(f̃)∗

ζF′,G

f∗

HomSh(X,Ab)(F̃ ,G ) HomPSh(X,Ab)(F ,G )

HomSh(X,Ab)(F̃ ,G ′) HomPSh(X,Ab)(F ,G ′)

ζF,G

g∗ g∗

ζF′,G

因此 ζ 是 ˜(−)和嵌入函子 Sh(X,Ab) → PSh(X,Ab)间的联络. 我们得到“预层范畴到层范畴的层化函子”是
“层范畴到预层范畴的嵌入函子”的左伴随. 嵌入函子是层化函子的右伴随. 结合 [注记1.106],我们也看到嵌入
函子 Sh(X,Ab) → PSh(X,Ab)与层化函子 ˜(−) : PSh(X,Ab) → Sh(X,Ab)的合成和层范畴 Sh(X,Ab)上的
恒等函子是自然同构的.

Corollary 1.108 ([GW20]). 设 X 是拓扑空间,则 Sh(X,Ab)中任何态射存在余核.

Proof. 设 η : F → G 是X 上层的态射,设 C 是 η对应的预层余核,即把每个开子集 U 对应到 CokerηU ,每个开
子集链 V ⊆ U 对应到 CokerηU 到 CokerηV 的自然同态得到的预层,并记 π : G → C 是预层余核的标准投射,
每个开子集 U 对应的同态 πU 都是满射. 下面说明 (C̃ , iCπ)是 η在层范畴中的余核.

F G C C̃

H

η π

ξ

iC

ξ

ξ̃

首先根据伴随层的泛性质可知 iCπ是层范畴中的 epic态. 任给 X 上层H 和态射 ξ : G → H 并设 ξη = 0. 那
么由 π的定义可知存在态射 ξ : C → H 使得 ξ = ξπ. 再由伴随层的泛性质得到态射 ξ̃ : C̃ → H 使得 ξ̃iC = ξ.
于是 ξ = ξ̃iCπ. 因此 (C̃ , iCπ)是 η在层范畴中的余核.

Remark 1.109. 根据 [推论1.108]和 [命题1.105]前面的讨论, Sh(X,Ab)满足任何态射存在核与余核. 可以证
明 Sh(X,Ab)是 Abel范畴,见 [Sta25, Lemma 18.3.1]. 但 Sh(X,Ab)到 PSh(X,Ab)的嵌入函子并不是正合
的. 结合 [注记1.107], 层化函子 ˜(−) : PSh(X,Ab) → Sh(X,Ab) 作为 Abel 范畴间的左伴随函子, 不仅右正
合,还保持任意正向极限. 如果 {Fi, θ

i
j}I 是预层正向系,这里 I 是正向集,那么通过对应 U 7→ lim−→I

Fi(U)可构

造 {Fi, θ
i
j}I 在预层范畴 PSh(X,Ab)中的正向极限. 特别地,我们也得到 Sh(X,Ab)中的正向系 {Fi, θ

i
j}I 在

Sh(X,Ab)中正向极限的构造 [Har77]: 通过对应 U 7→ lim−→I
Fi(U)定义出预层后再将其层化.
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Proposition 1.110. 设 X 是拓扑空间,则对任何 X 上 Abel群层间态射 φ : F → G ,定义 Imφ是将 X 的任何

开子集对应到 ImφU 所定义出的 X 上预层 (注意对任何 X 的开子集 U ,有 Imφ(U) ⊆ G (U)). 命 (Imφ, i)是预
层 Imφ的伴随层, C 是 [推论1.108]中的预层余核, π : G → C 是标准投射,记 j : Imφ → C 是标准投射,这也
是预层态射 π的核. 那么根据伴随层的泛性质,存在唯一的态射 k : Imφ→ C 使得 ki = iC j,即下图交换:

下面我们说明拓扑空间之间的连续映射 f : X → Y 可诱导层范畴之间的函子. 对 X 上层 F , 我们来定
义一个 Y 上的层 f∗(F ): 任给 Y 的开子集 V , 定义 f∗(F )(V ) = F (f−1(V )); 任给 Y 的开子集链 V ⊆ U ,
f−1(V ) ⊆ f−1(U),所以有F 的限制映射 Resf

−1(U)

f−1(V ) : F (f−1(U)) → F (f−1(V )),把 Resf
−1(U)

f−1(V ) 记作 ResUV 再更
改记号得到 ResUV : f∗(F )(U) → f∗(F )(V ),于是得到预层 f∗(F ). 因为 F 是层,因此由 f∗(F )的定义直接保

证了 f∗(F )满足粘接条件. 由此得到的层 f∗(F )被称为F 沿 f 的推出层.
根据推出层的定义, 任何 X 上层间态射 η : F → G 也可以自然地对应 f∗(F ) 到 f∗(G ) 的态射 f∗(η) :

f∗(F ) → f∗(G ),满足把 Y 中每个开子集 V 对应到自然变换 ηf−1(V ). 上述讨论表明对给定连续映射取推出层
的构造产生函子 f∗ : Sh(X) → Sh(Y ).

Definition 1.111 ([Har77]). 设 (X,OX), (Y,OY )是赋环空间. 如果 f : X → Y 是连续映射且 f # : OY → f∗OX

是 Y 的环层间的态射,则称二元组 (f, f #)是赋环空间 (X,OX)到 (Y,OY )的一个态射.

如果 (X,OX), (Y,OY ), (Z,OZ)均为赋环空间,那么对态射 (f, f #) : (X,OX) → (Y,OY )和 (g, g#) : (Y,OY ) →
(Z,OZ), 有连续映射 gf : X → Z 以及环层间态射 (g∗f

#)g# : OZ → g∗f∗(OX) = (gf)∗(OX). 定义 (f, f #) 与

(g, g#)的合成为 (gf, (g∗f
#)g#) : (X,OX) → (Z,OZ). 通过直接计算验证可知赋环空间之间态射的合成具备结

合律且每个赋环空间 (X,OX)上的单位态是 (idX , 1OX
). 并且不难看出 (X,OX)到 (Y,OY )的态射全体构成的

类是集合. 因此所有的赋环空间关于上述定义的态射以及合成构成范畴,称为赋环空间范畴.

Lemma 1.112. 如果 (X,OX), (Y,OY )是同构的赋环空间,则有环同构 OX(X) ∼= OY (Y ).

下面我们考虑局部赋环空间. 设 (X,OX), (Y,OY ) 是局部赋环空间, 如果赋环空间之间的态射 (f, f #) :

(X,OX) → (Y,OY ) 满足对任何 p ∈ X , 局部环间的环同态 (f #)p : OY,f(p) → OX,p 是局部同态 (见下面的
[引理1.113]),则称 (f, f #) : (X,OX) → (Y,OY )为局部赋环空间之间的态射.

Lemma 1.113. 设 (R,m), (S, n)是交换局部环,则 f(m) ⊆ n的充要条件是 f−1(m) = n. 此时称 f 是局部同态.

Remark 1.114. 这里 f(m) ⊆ n等价于 m ⊆ f−1(n),也等价于 m = f−1(n).

根据局部赋环空间之间态射的定义不难看出局部赋环空间之间态射的合成仍为局部赋环空间,因此所有局
部赋环空间构成赋环空间范畴的子范畴, 它不是全子范畴 (存在赋环态射不是局部赋环态射的例子). 特别地,
我们能够讨论局部赋环空间之间的同构.
下面我们说明对任给含幺交换环,引入其素谱上一个具体的结构层使得带有结构层的素谱能够重塑环. 固

定含幺交换环 R,考虑 R的素谱 SpecR,我们将构造 SpecR上的一个环层 OSpecR 使得 (R,OSpecR)是局部赋环

空间且 OSpecR 的整体截面全体 Γ(SpecR,OSpecR) ∼= R,进而该环层已经蕴含 R所有的结构信息 ([定理1.115]).
以下记每个元素 a ∈ R对应 X = SpecR中的主开集 {P ∈ SpecR|a /∈ P}为 Xa,易见 {Xa|a ∈ R}是 Zariski
拓扑的一个拓扑基. 之后构造的环层 OX 会满足 Γ(Xa,OX) ∼= Ra,即 R在元素 a生成的乘法幺半群处的局部

化 (对应 [推论1.37]). 并且我们会看到含幺交换环范畴与仿射概形范畴是范畴对偶的 (见 [定理1.118]).
现在对每个 X 的开子集 U ,定义 OX(U)为所有满足下述条件的映射 s : U →

∐
p∈U

Rp构成的集合:
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对每个 p ∈ U ,存在 p的某个开邻域 V ⊆ U 以及 a ∈ R, t ∈ R−
⋃

q∈V
q使得 s(q) = a/t ∈ Rq, ∀q ∈ V.

即映射 s : U →
∐
p∈U

Rp局部上可表示为统一分式,其中
∐
p∈U

Rp表示局部环族 {Rp | p ∈ SpecR}的无交并.

通过 Rp 的环结构可自然地赋予 OX(U)上的含幺交换环结构. 对 X 的每个开子集链 V ⊆ U ,有天然的限
制映射 ResUV : OX(U) → OX(V ). 进而定义出逆变函子 OX : Top(X) → CRing. 因为每个开子集 U 对应的

OX(U)的定义是局部的,故容易验证预层 OX 满足粘接公理,为 X 上环层. 称之为素谱上的结构层.
下面我们说明 (X,OX)是局部赋环空间,并且 OX 可重塑给定的含幺交换环 R.

Theorem 1.115 ([Har77]). 设 R是含幺交换环, X = SpecR, OX 是如上定义的结构层. 那么:
(1)对每个素理想 p,茎 OX,p

∼= Rp是局部环,故 (X,OX)是局部赋环空间.
(2)对每个 a ∈ R,主开集 Xa对应的含幺交换环 OX(Xa) ∼= Ra. 特别地, OX(X) ∼= R.

Proof. (1) 固定 R 的素理想 p, 有标准映射 φ : OX,p → Rp, [(U, s)] 7→ s(p), 这是定义合理的环同态. 注意到
R− p中每个元素 v对应 OX,p中的可逆元 [(X, v/1)],因此环同态 R→ OX,p, a 7→ [(X, a/1)]把 R− p中元素映

至 OX,p中的可逆元,这里把 a/1视作映射 a/1 : X →
∐
q∈X

Rq, q 7→ a/1. 这诱导出环同态

ψ : Rp → OX,p, a/v 7→ [(Xv, a/v)],

其中 a/v : Xv →
∐

q∈Xv

Rq, q 7→ a/v. 容易验证 φ与 ψ是互逆的映射,故有环同构 OX,p
∼= Rp.

(2) 固定 a ∈ R, 由环同态 R → OX(Xa), b 7→ b/1 将 a 的自然数幂映至可逆元知该环同态诱导环同态

ψ : Ra → OX(Xa), b/a
m 7→ b/am, 这里 b/am ∈ OX(Xa) 表示将 Xa 中每个素理想映至 b/am 的映射. 下

面证明 ψ 是单射. 如果 b/am ∈ Ra 满足 b/am 是 Xa 上零映射, 那么每个 p ∈ Xa 满足 annR(b) ⊈ p, 这里
annR(b) = {c ∈ R|cb = 0}. 因此 V (annR(b)) ∩Xa = ∅,进而 a ∈

√
annR(b),这说明在 Ra中 b/am = 0.

最后证 ψ : Ra → OX(Xa)是满射,任取 s ∈ OX(Xa). s关于 ψ原像的构造分为两步.
首先说明存在 u1, ..., ur ∈ R 使得 Xa = Xu1

∪ · · · ∪ Xum
且 s在每个 Xuj

(1 ≤ j ≤ r)上可表示为 aj/uj

的形式. 根据 OX 的定义, Xa 可表为一些开子集 {Ui|i ∈ I}的并,且在每个 Ui 上 s形如 ci/vi,其中 vi ∈ R满

足 vi /∈ q, ∀q ∈ Ui. 因为 {Xb|b ∈ R}是素谱的拓扑基,所以每个 Ui 可表为一些 Xb 的并,所以可不妨设每个 Ui

都为主开集,设为 Ui = Xbi . 从而 Xbi ∩ V (vi) = ∅, ∀i ∈ I 且 Xa 为 {Xbi |i ∈ I}之并. 于是 bi ∈
√
(vi),所以

存在 di ∈ R 和正整数 ni 使得 bni

i = divi, 这里 di /∈ q, ∀q ∈ Xbi . 所以 s 在每个 Xbi 上可表示为 cidi/b
ni

i . 注
意到 Xbi = Xb

ni
i
, 所以用 ui 替换 bni

i , ai 替换 cidi, 再结合 Xa 是拟紧空间便知存在有限个 u1, ..., ur ∈ R使得

Xa = Xu1
∪ · · · ∪Xum

且 s在每个 Xuj
(1 ≤ j ≤ r)上可表示为 aj/uj .

这时在每个 Xui
∩ Xuj

= Xuiuj
上, s 有 ai/ui 与 aj/uj 两种表示方式, 故由之前证明的 ψ 是单射可知在

Ruiuj
中 ai/ui = aj/uj . 因此对上述固定的 1 ≤ i, j ≤ r, 存在正整数 ℓij 使得 (uiuj)

ℓij (aiuj − ajui) = 0. 故
可选取充分大的正整数 n 使得 (uiuj)

n(aiuj − ajui) = 0, ∀1 ≤ i, j ≤ r. 用 un+1
i 替换 ui, ai 替换 uni ai, 可设

Xa = Xu1
∪ · · · ∪ Xum

, s在每个 Xuj
(1 ≤ j ≤ r)上可表示为 aj/uj 且满足 aiuj = ajui, ∀1 ≤ i, j ≤ r. 再由

{Xui
}ri=1 覆盖 Xa 得到存在 z1, ..., zr ∈ R以及正整数 t使得 at = z1u1 + · · · + zrur. 命 b = z1a1 + · · · + zrar,

那么对每个 1 ≤ j ≤ r, ujb = ajz1u1 + · · ·+ ajzrur = aja
t. 这说明 s在每个 Xui

上可表为 b/at.
通过前面的讨论,得到 ψ(b/at) = s,所以 ψ是满射.

Definition 1.116 (仿射概形, [Har77]). 如果一个局部赋环空间满足存在含幺交换环 R使得该空间作为局部赋

环空间与 (R,OSpecR)同构,那么称该局部赋环空间是一个仿射概形. 每个含幺交换环 R在 [定理1.115]意义下
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对应的仿射概形 (R,OSpecR)简称为 R决定的标准仿射概形. 称所有仿射概形所构成的局部赋环空间范畴的全
子范畴为仿射概形范畴. 如果 R是零环,这时其素谱是空集,对应的仿射概形称为空概形.

[定理1.115]的一个直接推论便是交换环的素谱上的结构层承载了环的所有结构信息.

Corollary 1.117 ([Har77]). 若含幺交换环 R,S决定的标准仿射概形 (R,OSpecR)和 (S,OSpecS)同构,则 R ∼= S.

Proof. 由 [引理1.112],这时 OSpecR(SpecR) ∼= OSpecS(SpecS),再应用 [定理1.115]即可.

代数闭域 k上仿射簇范畴与 k上有限生成半素交换代数范畴间通过取仿射簇的坐标环可产生标准的范畴

对偶. 下述定理表明仿射概形范畴等价于含幺交换环范畴的对偶范畴.

Theorem 1.118 ([Har77]). 含幺交换环范畴与仿射概形范畴是范畴对偶的.

Proof. 因为仿射概形范畴和由所有形如 (SpecR,OSpecR) 的局部赋环空间构成的全子范畴 C 是等价的, 所以要
证明结论只需构造 C 与 CRing之间的范畴对偶. 下面先构造出范畴间对偶函子,再验证它确实是对偶函子.
首先说明存在一自然的逆变函子 F : CRing → C 满足 F (R) = (SpecR,OSpecR). 易知交换环间同态

f : R → R′ 可逆变地诱导连续映射 f∗ : SpecR′ → SpecR,Q 7→ f−1(Q). 对 SpecR 的每个开子集 V 以及

Q ∈ (f∗)−1(V ),有自然的局部同态 fQ : Rf∗(Q) → R′
Q, a/s 7→ f(a)/f(s).

根据素谱上结构层的定义,局部同态族 {fQ|Q ∈ f−1(V )}诱导映射

(f∗)#(V ) : OSpecR(V ) → (f∗)∗OSpecR′(V ) = OSpecR′((f∗)−1(V )), s 7→ (f∗)#(V )(s),

这里 (f∗)#(V )(s)将 f−1(V )中每个素理想 Q映至 fq(s(q)),其中 q = f∗(Q). 易验证 (f∗)#(V )是定义合理的环

同态并且

(f∗)# : obTop(SpecR) →
⋃

V ∈obTop(SpecR)

HomCRing(OSpecR(V ), (f∗)∗OSpecR(V )), V 7→ (f∗)#(V )

是函子 OSpecR 到 (f∗)∗OSpecR 的自然变换,这说明 (f∗)# : OSpecR → f∗OSpecR′ 是环层间的态射.
根据 (f∗)#的定义可知对每个 Q ∈ SpecR′, q = f∗(Q)以及 q的任何开邻域 V 有下述交换图:

Rq R′
Q

OSpecR(V ) OSpecR′((f∗)−1(V ))

fQ

(f∗)#(V )

这里 Rq = OSpecR,f∗(Q), R
′
Q = OSpecR′,Q,因此 (f∗, (f∗)#) : (SpecR,OSpecR) → (SpecR′,OSpecR′)是局部赋环空

间之间的态射. 于是通过定义 F (R) = (SpecR,OSpecR)并将任何交换环间的环同态 f : R → R′ 对应到如上定

义 F (f) = (f∗, (f∗)#)可得逆变函子 F : CRing → C.
下面来验证前面构造的函子 F : CRing → C 是范畴对偶. 根据 C 的定义直接得到 F 是本质满函子, 故

还需验证 F 是忠实满函子, 即说明映射 F : HomCRing(R,R
′) → HomC((SpecR′,OSpecR′), (SpecR,OSpecR))

是双射. 先证 F 是单射. 如果环同态 f, g : R → R′ 满足 F (f) = (f∗, (f∗)#) = (g∗, (g∗)#) = F (g), 那么
由 (f∗)# = (g∗)# 知环同态 (f∗)#(SpecR), (g∗)#(SpecR) : OSpecR(SpecR) → OSpecR′(SpecR′) 相同. 通过 [定
理1.115] 我们看到环同构 R → OSpecR(SpecR), a 7→ a/1, 所以 (f∗)#(SpecR) = (g∗)#(SpecR) 表明 f(a) =
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g(a), ∀a ∈ R,即 f = g. 最后验证 F 是满射,任取局部赋环同态 (h, h#) : (SpecR′,OSpecR′) → (SpecR,OSpecR),
那么赋环态射 h# : OSpecR → h∗OSpecR′ , 它诱导 ĥ = h#(SpecR) : Γ(SpecR,OSpecR) → Γ(SpecR′,OSpecR′), 借
助 [定理1.115] 可得环同态 φ : R → S, 满足 ĥ 把每个 a/1 ∈ Γ(SpecR,OSpecR)(注意 Γ(SpecR,OSpecR) 中元

素均具备这种形式) 映至 φ(a)/1 ∈ Γ(SpecR′,OSpecR′). 任取 R′ 的素理想 Q, 那么对任何 OSpecR,h(Q) 中元素

[(U, s)] 存在 h(Q) 的开邻域 V ⊆ U 使得 s 在 V 上可表为 a/v 的形式, 进而知 h# 所诱导的茎之间的同态把

[(V, a/v)] ∈ OSpecR,h(Q) 映至 [[(h−1(V ), φ(a)/φ(v))] ∈ OSpecR′,Q. 因为 (h, h#) 是局部赋环映射, 所以 R′
Q 唯一

的极大理想 QQ = {φ(a)/φ(v)|a ∈ h(Q), v ∈ R − h(Q)}, 由此得到 φ−1(Q) = h(Q). 由 Q 的任意性知上述

环同态 φ 所诱导的素谱间的连续映射 φ∗ 就是 h. 前面提到 h# 诱导层面的间同态把形如 [(V, a/v)] 映至形如

[[(h−1(V ), φ(a)/φ(v))]的元素,可直接计算验证 (φ∗)# = h#. 所以 F (φ) = (h, h#).
由此得到范畴对偶 F : CRing → C,结合 C 是仿射概形的全子范畴以及仿射概形的定义便得结论.

Notation. 通常将 R决定的标准仿射概形 (SpecR,OSpecR)简记为 SpecR.

下面是 [例1.32]在仿射概形场景的对应.

Example 1.119. 考虑仿射概形 X = SpecR 的任何非空主开集 Xa, 下证有局部赋环空间同构 (Xa,OX |Xa
) ∼=

SpecRa. 考虑局部化标准映射 λ : R → Ra, b 7→ b/1. 作用 [定理1.118] 中的范畴对偶 F 可得赋环空间态射

F (λ) = (λ∗, (λ∗)#) : SpecRa → SpecR. 因为 λ∗ 诱导 SpecRa 到 Xa 的拓扑同胚,所以可将 F (λ)限制为仿射概

形 SpecRa 到 (Xa,OX |Xa
)的态射,该态射所对应环层 OX |Xa

到 ξ∗OSpecRa
的态射 (其中 ξ : SpecRa → Xa 是

λ∗ 诱导的拓扑同胚)在每点 p ∈ Xa 处诱导的茎上同态就是标准同构 Rp
∼= (Ra)pa

. 现在应用 [命题1.101]可得
F (λ)诱导的仿射概形 SpecRa到 (Xa,OX |Xa

)的局部赋环空间态射是同构. 故 (Xa,OX |Xa
)是仿射概形.

Remark 1.120. 因此任何仿射概形 X 的每点 p都存在某个开邻域 Vp使得 (Vp,OX |Vp
)是仿射概形.

Example 1.121. 设 k是域,那么零理想是 k唯一的素理想. OSpeck(Speck) ∼= k.

Definition 1.122 (模层, [Har77]). 设 (X,OX)是赋环空间. 如果 X 上的 Abel群层 F 满足每个 X 的开子集

U 对应的加法群 F (U) 是 OX(U)-模且对任何 X 的开子集 V ⊆ U , 限制同态 ResUV : F (U) → F (V ) 是记

µU : OX(U)× F (U) → F (U)是 OX(U)在F (U)上的数乘作用,总有

OX(U)× F (U) F (U)

OX(V )× F (V ) F (V )

(ρUV ,ResUV )

µU

ResUV
µV

(1.4)

交换 (其中 ρUV 表示 OX(U)到 OX(V )的限制同态),则称 F 是一个 OX-模层,也简称为 OX-模.

Remark 1.123. 由图(1.4)我们能够对每个 p ∈ X , 诱导茎层面的加群同态 µp : OX,p × Fp → Fp, (fp, sp) 7→
fp · sp := µp(fp, sp),进而对每个 p ∈ X , Fp可自然成为 OX,p-模. 当 (X,OX)是局部赋环空间时,对每个 p ∈ X ,
记 mp是 OX,p唯一的极大理想,那么 κ(p) := OX,p/mp是相应的剩余域. 由此得到 κ(p)-线性空间:

F (p) := Fp ⊗OX,p
κ(p) (1.5)

称为F 在 p ∈ X 处的纤维. 如果 s ∈ F (U), U 是 p的某个开邻域,记 s(p)是 sp ∈ Fp在F (p)中的像.
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例如, 赋环空间 (X,OX) 上结构层 OX 可自然视作 OX-模, 该 OX-模在每点处的纤维(1.5)就是每点处茎
的剩余域. 此外, 如果 X 上 Abel 群预层 F 在每个开子集 U ⊆ X 上, F (U) 是 OX(U)-模且满足(1.4), 那么
F (这样的预层我们也称为 OX-模预层) 在 [命题1.105] 意义下的层化也自然成为 OX-模: 根据 F̃ 的构造, X
的每个开子集 U 上的截面全体 F̃ (U)上有自然的 OX(U)-模结构, 这时任何 f ∈ OX(U)作用 (sx)x∈U 定义为

(fxsx)x∈U . 并且根据层化的定义可直接验证 F̃ 满足(1.4). 可直接验证F 到 F̃ 的标准态射 iF : F → F̃ 满足

在每个 X 的开子集 U 上给出 OX(U)-模同态.
如果赋环空间 (X,OX) 上的 OX-模之间的层态射 φ : F → G 如果满足 X 的每个开子集对应的映射

φU : F (U) → G (U) 是 OX(U)-模同态, 则称 φ 是 OX-模层间的态射或 OX-模同态. 特别地, 我们能够谈论
OX-模同构. 以及结合 [注记1.123]知 OX-模层间的态射 φ : F → G 满足对每个 p ∈ X ,有 φp : Fp → Gp 是

OX,p-模同态. 所有 OX-模以及 OX-模同态构成的范畴称为 OX-模范畴, 记作 OX-Mod. 根据前面的讨论, [命
题1.105]中任何 OX-模预层F 到 OX-模层 G 的 OX-模预层态射 φ提升的层态射 φ̃ : F̃ → G 是 OX-模层态射.
我们谈论 OX-模F 的子层F ′时,都表示子 OX-模层: 即要求对X 的每个开子集 U , F ′(U)是F (U)的子

OX(U)-模. 例如, OX 作为自身上 OX-模,子层 I 便满足每个 X 的开子集 U 对应的 I (U)是交换环 OX(U)的

理想. 将 OX 作为 OX-模的子层 I 称为 X 上的理想层.

如果 {Fi}i∈Λ 是一族 OX-模, 那么可自然定义 OX-模 ⊕i∈ΛFi. 此外, 根据 [注记1.109] 和 [注记1.123] 的
讨论,如果 {Fi}i∈Λ 是一族 OX-模预层,层化 {F̃i}i∈Λ 的直和可由 ⊕i∈ΛFi 的层化给出. 如果 X 上的 OX-模F

满足 F ∼= ⊕i∈ΛOX ,则称 F 是自由的. 如果 OX-模 F 满足存在自然数 r 和 X 的开覆盖 {Ui}i∈Λ 使得对每个

i ∈ Λ有F |Ui
∼= O⊕r

Ui
,则称F 是秩为 r的局部自由 OX-模.

下面我们记录些模层的基本构造. 固定赋环空间 (X,OX)以及 OX-模间的态射 φ : F → G . 那么 Kerφ不
仅是层,还是 OX-模层. 并且根据前面的讨论,任何 OX-模间态射的余核, [推论1.108],也是 OX-模.

Example 1.124 (Hom 层, [Har77]). 设 (X,OX)是赋环空间, U 是开子集. 则任何 OX-模 F 可产生 OX |U -模
F |U . 所以任何 OX-模F ,G 限制为 OX |U -模后F |U 到 G |U 的 OX |U -模同态全体HomOX |U (F |U ,G |U )有天然
的 OX(U)-模结构. 并且 X 的任何开子集链 V ⊆ U 可自然诱导 HomOX |U (F |U ,G |U )到 HomOX |V (F |V ,G |V )
的限制同态,由此产生 OX-模预层HomOX

(F ,G ).
下面说明HomOX

(F ,G )是 X 上层来得到HomOX
(F ,G ) ∈ OX-Mod.

任取 X 的开子集 U 的开覆盖 {Ui|i ∈ I},以及 ηi ∈ HomOX
(F ,G )(Ui) = HomOX |Ui

(F |Ui
,G |Ui

). 对每个
i ∈ I , ηi是自然变换

ηi : Top(Ui) →
⋃

V ∈obTop(Ui)

HomOX(V )(F (V ),G (V )), V 7→ (ηi)V .

满足对任何 i, j ∈ I , ηi 和 ηj 在 Ui ∩ Uj 上相容. 下面构造 F |U 到 G |U 的自然变换 η 使得它在每个 Ui ⊆ U

上的限制为 ηi. 对 U 的每个开子集 W , W 有开覆盖 {W ∩ Ui|i ∈ I}, 每个 W ∩ Ui 对应 OX(W ∩ Ui) 模同态
(ηi)W∩Ui

: F (W ∩Ui) → G (W ∩Ui). 下面要从所有的 (ηi)W∩Ui
出发构造OX(W )-模同态 ηW : F (W ) → G (W )

使得该模同态与 X 开子集的限制相容. 任取 s ∈ F (W ), 那么 s|W∩Ui
在 (ηi)W∩Ui

下的像满足任何 i, j ∈ I ,
(ηi)W∩Ui

(s|W∩Ui
)与 (ηj)W∩Uj

(s|W∩Uj
)在开子集W ∩ Ui ∩ Uj 上的限制相同. 因此应用层 G 的粘接条件,存在

唯一的 ηW (s) ∈ G (W )使得 ηW (s)在每个W ∩Ui上的限制是 (ηi)W∩Ui
(s|W∩Ui

). 同样利用 G 的粘接条件,模层
限制映射与结构层限制映射的相容性以及 (ηi)W∩Ui

均为模同态可直接验证 ηW 是 OX(W )-模同态,这里的 ηW
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由 Ui, ηi,W 唯一决定. 任给W 的开子集W ′,需要说明下图的交换性.

F (W ) G (W )

F (W ′) G (W ′)

θW
W ′

ηW

τW
W ′

ηW ′

根据 ηW 的定义以及每个 ηi的自然性,对每个固定的 i ∈ I ,下述六面体除了顶面均交换:

F (W ) G (W )

F (W ′) G (W ′)

F (W ∩ Ui) G (W ∩ Ui)

F (W ′ ∩ Ui) G (W ′ ∩ Ui)

ηW

θW
W ′

τW
W ′

ηW ′

ηi(W
′∩Ui)

因此 τWW ′ηW 和 ηW ′θWW ′ 与 τWW ′∩Ui
的合成相同. 现在应用层 G 的粘接性质,得到 τWW ′ηW = ηW ′θWW ′ . 于是

η : Top(U) →
⋃

W∈obTop(U)

HomOX(W )(F (W ),G (W )),W 7→ ηW

是F |U 到 G |U 的自然变换. 根据 η ∈ HomOX |U (F |U ,G |U )的构造,它在每个 Ui上的限制就是 ηi. 同样由 G 的

粘接性质可得如果 ξ ∈ HomOX |U (F |U ,G |U )在每个开子集 Ui 上限制为 ηi,那么 ξW = ηW 对 U 的任何开子集

W 成立. 于是HomOX
(F ,G )满足粘接条件. 因此HomOX

(F ,G )也是 OX-模.

Example 1.125 (OX-模层的张量积, [Har77]). 设赋环空间 (X,OX) 上有 OX-模 F ,G , 那么将每个 X 的开子

集 U 能够对应到 OX(U)-模 F (U) ⊗OX(U) G (U). 因为任何开子集链 V ⊆ U , 限制态射 OX(U) 到 OX(V )

使得 OX(V )-模都能够视作 OX(U)-模, 所以我们能够利用 F 和 G 的限制态射定义 F (U) ⊗OX(U) G (U) 到

F (V )⊗OX(V ) G (V )的限制态射使得对应 U 7→ F (U)⊗OX(U) G (U)定义了 OX-模预层. 记其层化为F ⊗OX
G ,

这是 OX-模, [注记1.123], 称为 OX-模 F ,G 的张量积. 下面我们来说明张量积 F ⊗OX
G 在每点 p ∈ X 处的

茎同构于 Fp ⊗OX,p
Gp. 首先对 p 的任何开邻域 U , OX(U) 到 OX,p 的标准代数同态使得 Fp 和 Gp 都能视作

OX(U)-模, 于是标准映射 F (U) → Fp 和 G (U) → Gp 都成为 OX(U)-模同态, 这使得我们能够定义标准同态
F (U) ⊗OX(U) G (U) → Fp ⊗OX,p

Gp,于是我们得到同态 (F ⊗OX
G )p → Fp ⊗OX,p

Gp,利用 [命题1.105]. 这也
是 OX,p-模同态. 逆映射可通过定义 Fp × Gp 到 (F ⊗OX

G )p 的 OX,p-平衡映射得到. 根据 [命题1.105]和 [注
记1.123],对任何 OX-模层F ,G ,H ,我们有 OX-模层同构 (F ⊗OX

G )⊗OX
H ∼= F ⊗OX

(G ⊗OX
H ). 在不引

起混淆时,记号F ⊗OX
G 也被简记为F ⊗ G .

如果赋环空间 (X,OX)上有 OX-模F ,我们也能够谈论F 的张量代数,对称代数以及外代数. 一个直接的
构造是对 X 的每个开子集 U ,对应到 OX(U)-模 F (U)作为 OX(U)-模的张量代数 TOX(U)F (U), (带上自然的
限制态射)得到预层,再将其层化,得到 OX-模 TOX

F . 根据层化的构造, [命题1.105], X 的每个开子集 U 对应

的 (TOX
F )(U)还是 OX(U)-代数. 利用张量积构造, [例1.125], TOX

F (称为F 的张量代数)也可以表示为

TOX
F = OX ⊕ F ⊕ (F ⊗ F )⊕ (F ⊗ F ⊗ F )⊕ · · · .
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类似地,将 X 的每个开子集 U 对应到 OX(U)-模F (U)作为 OX(U)-模的对称代数 SOX(U)F (U),再层化,可得
OX-模 SOX

F (称为F 的对称代数);且每个 (SOX
F )(U)是交换 OX(U)-代数.

我们也有 OX-模 F 的外代数 EOX
F = OX ⊕ F ⊕ ∧2

OX
F ⊕ ∧3

OX
F ⊕ · · · (作为 OX-模,也可以先对每个

U 7→ ∧kOX(U)F (U)定义的预层作层化再关于自然数指标 k作层的直和,即这里每个 OX-模 ∧kOX
F 来自前面考

虑的预层的层化). 将 OX-模 ∧kOX
F 称为F 的 k次外幂.
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2 代数簇: 古典簇的内蕴推广

这部分介绍代数闭域上通过函数层空间定义的预簇的概念, 代数簇是满足分离性的预簇, 并且这是前一
部分介绍的古典簇的内蕴推广. 随后我们简要介绍代数簇的维数理论、态射的纤维理论、关于可构造子集的
Chevalley定理、代数簇上向量丛的基本相关术语、Zariski切空间以及光滑性、完备簇理论以及一些代数群的
初步理论. 主要参考文献是 [Har77, Hum75, Spr98, TY05, CLS11].

2.1 域上的预簇

在 [例1.9]我们看到 n维射影空间 Pn 可以表示为 n + 1个标准仿射开子集的并, 每个标准仿射开子集到
k
n有标准的坐标映射. 此外,当 k是无限域时, Pn是不可约的 Noether拓扑空间. 抽象 Pn的这些特征:

Definition 2.1 (预簇, [Spr98]). 设 X 是拟紧拓扑空间且 OX 是 X 上 k-值函数层, [定义1.84]. 如果 X 有开覆

盖 {Ui}i∈Γ满足每个 (Ui,OX |Ui
)作为带有 k-值函数层的空间同构于某个仿射簇 Yi带上正则函数环层OYi

构成

的赋环空间 (Yi,OYi
),则称 (X,OX)是 k上的预簇. 有时为了方便将预簇 (X,OX)简记为 X .

Remark 2.2. 回忆 [定义2.1]中 (Ui,OX |Ui
) ∼= (Yi,OYi

)的具体含义来自 [注记1.86]: 这里指存在拓扑同胚 φi :

Ui → Yi 使得对任何 Yi 的开子集 V , (φ∗
i )V : OYi

(V ) → OX |Ui
(φ−1

i (V )), f 7→ fφi 是定义合理的双射. 因为 φi

是拓扑同胚, (φ∗
i )V 也是代数同构. 于是我们得到 Yi上层的同构 φ∗

i : OYi
→ (φi)∗(OX |Ui

). 根据 [命题1.101],对
每个 p ∈ Yi, φ∗

i 诱导 OYi,p 到 OX |Ui
在 φ−1

i (p)处茎的同构. 特别地,我们得到 (Ui,OX |Ui
)是局部赋环空间且二

元组 (φi, φ
∗
i ) : (Ui,OX |Ui

) → (Yi,OYi
)是局部赋环空间之间的同构. 注意到这里的讨论也说明我们定义的预簇

(X,OX)是局部赋环空间,它也是一些仿射簇的 “粘合”. 如果预簇 (X,OX)的开子集 U 满足 (U,OX |U )同构于
某个 k上仿射簇,那么称 U 是 X 的仿射开子集. 这时能够讨论 U 上坐标环 OX |U (U).
根据 [引理1.98]的构造过程, 预簇 (X,OX)在每点 p ∈ X 处的局部环/OX 在 p点处的茎 OX,p 可如下具

体描述: 在集合 T = {(U, f) | U是开子集且f ∈ OX(U)}上定义二元关系: (U, f) ∼ (V, g)当且仅当存在含于

U ∩ V 的开子集W 使得 f |W = g|W . 于是 T 关于该等价关系的等价类集合带上自然的 k-代数结构就是 OX,p.
因为 OX,p总有极大理想 {[(U, f)] ∈ OX,p | f(p) = 0},所以由 OX,p是交换局部代数知这是唯一的极大理想.
如果预簇 (X,OX)有仿射开子集 U(设有仿射簇 (Y,OY )和同构 φ : U → Y ),那么对 X 的任何开子集W ,

φ诱导带 k值函数层的赋环空间 (U ∩W,OX |U∩W )和 (φ(U ∩W ),OY |φ(U∩W ))之间的同构.

Remark 2.3. 根据 [注记1.3], 域上的预簇都是 Noether 空间. 特别地, 预簇总是拟紧的, [命题1.1]. 所以 [定
义2.1]中的仿射开覆盖 {Ui}i∈Γ可以要求仅有限多项.

Example 2.4 (射影空间作为不可约预簇, [Hum75]). 设 k是无限域, (Pn,OPn)是射影空间带上作为古典簇的正

则函数环层给出的局部赋环空间, [引理1.82]. 记 U0, U1, ..., Un 是 Pn 的标准仿射开覆盖, [例1.9], φi : Ui → k
n

是仿射坐标映射. 根据 [例1.29], φi : Ui → k
n诱导同构 (Ui,OX |Ui

) ∼= (kn,Okn). 故 (Pn,OPn)是不可约预簇.

一般地, 如果 X 是古典簇, 并带上正则函数环层 OX 成为带有 k-值函数层的空间 (X,OX), 那么 (X,OX)

到另一古典簇 (Y,OY )的在 [定义1.25]意义下的正则映射就是 [注记1.86]之前的讨论意义下的态射.

仿射古典簇都是和某个仿射簇 (视作带有 k-值函数层的空间)同构的预簇.

于是,根据 [推论1.33],我们立即得到 (可视作 [推论1.33]的重述)
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Theorem 2.5. 域 k上所有古典簇 (即拟仿射簇与拟射影簇)带上正则函数环层都是预簇.

Remark 2.6. 这说明我们之间讨论的域 k 上的古典簇范畴, 其中的对象带上正则函数环层视作带有 k-值函数
层的赋环空间后,有到预簇范畴 (视作带上 k-值函数层的空间范畴的全子范畴,即,我们讨论的预簇之间的态射
是指连续映射 φ : X → Y 满足 φ∗ 能够合理地定义 OY 到 φ∗OX 的层态射) 的忠实满嵌入函子. 故预簇可视
作古典簇的内蕴推广 (与之前的古典簇不同的是,这里预簇的概念不依赖于外接空间的选取). 我们当然也能够
谈论仿射的预簇: 和某个仿射簇 (带上正则函数环层)同构的预簇. 此外,如果 U 是预簇 (X,OX)的开子集,那
么 (U,OX |U )明显也构成预簇: 设 X 有仿射开覆盖 {Ui}i∈Γ,那么每个 U ∩ Ui 带上 k-值函数层的限制 OX |U∩Ui

同构于某个拟仿射簇, [注记2.2],这同构于一些仿射簇的并. 根据前面的讨论不难看到预簇 (X,OX)的任何点 p

的任何开邻域 U 总包含仿射开子集 V 使得 p ∈ V . 即预簇的所有仿射开子集构成拓扑基.

Example 2.7 (利用双射赋予预簇结构). 设 (X,OX)是域 k上的预簇, Y 是集合且 φ : Y → X 是双射. 那么我
们可以赋予 Y 上拓扑结构使得 φ成为同胚,于是对 Y 的每个开子集 U ,定义

OY (U) = {f : U → k | f = gφ|U , g ∈ OX(φ(U))},

那么 (Y,OY (U))构成带有 k-值函数层的赋环空间成为预簇并且 φ自然诱导同构 (X,OX) ∼= (Y,OY ). 实际上
在 [例1.32] 中, 我们将一般线性群 GLn(k) 自然视作仿射古典簇的过程就默认使用了 GLn(k) 和 k

n2

中拟仿

射簇 k
n2 − V(detn)间有典范双射来得到 GLn(k)是仿射古典簇,预簇的内蕴定义使得我们能够更严格地赋予

GLn(k) 上的预簇结构, 且它作为预簇同构于某个仿射簇. 在 [引理1.54] 中我们看到射影空间 Pn 和 Pm 的笛
卡尔积 Pn × Pm 能够通过 Segre 嵌入赋予古典簇结构, 这也来自应用 Segre 嵌入 S 给出的双射 Pn × Pm →
S (Pn × Pm) ⊆ Pnm+m+n使得 Pn × Pm能够赋予预簇结构满足和古典簇S (Pn × Pm)作为带 k-值函数层的赋
环空间是同构的. 对 [命题1.56]中讨论的拟射影簇的笛卡尔积有同样的说明.

Example 2.8 (子预簇, [Hum75]). 设 (X,OX) 是域 k 上的域簇, 并设 Y 是局部闭子集, 即 Y 是 X 的某个开

子集和闭子集的交. 设 X 有仿射开覆盖 U1, ..., Um,那么 Y ∩ Uj 同构于某个仿射簇的开子集与闭子集之交,即
Y ∩ Uj 同构于某个拟仿射簇. 所以由 [注记2.6]或 [推论1.33], Y ∩ Uj 带上 OX |Y 在 Y ∩ Uj 上的限制可以表
示为一些 Y ∩ Uj 的开子集 (所以也是 Y 的开子集)的并,且每个这样的 Y 的开子集带上限制函数层作为带有

k-值函数层的赋环空间与某个仿射簇同构. 这说明 (Y,OX |Y )也是预簇 (也见 [TY05, Proposition 12.2.6]). 我
们把 X 的局部闭子集 Y 产生的预簇 (Y,OX |Y )称为 X 的子预簇. 并且在 [例1.85]我们看到预簇 X 的子预簇

Y 满足 Y 到 X 的标准嵌入是预簇态射. 所以预簇 X 到任何预簇 Z 的态射可限制在 X 的子预簇 Y 上视作 Y

到 Z 的预簇态射.

Notation. 将域 k上的预簇范畴记作 k-Pre.Var. 我们有古典簇范畴 k-Cl.Var到 k-Pre.Var的标准嵌入.

在 [注记2.6]我们指出预簇和预簇作为带 k-值函数层的赋环空间之间的态射定义出预簇范畴. 所以对预簇
(X,OX)和 (Y,OY ),映射 φ : X → Y 是预簇间的态射当且仅当 φ连续且对 Y 的任何开子集 V 以及 f ∈ OY (V )

有 fφ ∈ OX(φ
−1(V )). 我们自然希望对预簇之间的映射有易于验证的态射判别方法.

Proposition 2.9 (预簇态射的仿射判别法, [Hum75]). 设 (X,OX)和 (Y,OY )是域 k上的预簇, φ : X → Y 是

映射. 如果存在 Y 的仿射开覆盖 V1, ..., Vm和X 的开覆盖 U1, ..., Um使得对任何 1 ≤ i ≤ m, φ(Ui) ⊆ Vi且任何

f ∈ OY (Vi)蕴含 fφ|Ui
∈ OX(Ui),那么 φ : X → Y 是预簇态射.
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Proof. 首先我们可不妨设所有的 Ui 都是 X 的仿射开子集,因为每个 Ui 可表示为有限多个 X 的仿射开子集的

并 (借助 X 的所有仿射开子集构成拓扑基以及 Noether空间的子空间依然拟紧, [注记1.2]),并且 Ui 包含的每

个 X 的仿射开子集 U 当然也满足 φ(U) ⊆ Vi 以及 fφ|U ∈ OX(U). 所以我们把 Ui 替换为它包含的有限仿射开

覆盖对应的仿射开子集以及将 Vi重复相应多次,可不妨设条件中的 Ui都是X 的仿射开子集 (这时的指标数目
可能比原有的 m严格多). 于是由 Ui 和 Vi 都同构于仿射簇得到 φi = φ|Ui

: Ui → Vi 连续 (仿射簇之间的正则
映射连续),结合 {Ui}mi=1是 X 的开覆盖以及 {Vi}mi=1是 Y 的开覆盖得到 φ连续.
现在任取 Y 的开子集 V 和 f ∈ OY (V ), 我们需要验证 fφ ∈ OX(φ

−1(V )). 现在 f |Vi∩V ∈ OY (V ∩ Vi).
由条件, fφ|φ−1(V )∩Ui

在 OX(Ui ∩ φ−1(V ))中. 而 {Ui ∩ φ−1(V )}mi=1 构成 φ−1(V )的开覆盖且 fφ|φ−1(V )∩Ui
核

fφ|φ−1(V )∩Uj
在开覆盖重合部分取值相同 (因为都是 fφ的限制),故层的粘接条件保证 fφ ∈ OX(φ

−1(V )).

Remark 2.10. 设预簇 X 和预簇 Y 满足 X 上有开覆盖 {Ui}i∈Λ 以及预簇态射族 {φi : Ui → Y }i∈Λ 满足对任何

指标 i, j 只要 Ui ∩ Uj 非空,就有 φi|Ui∩Uj
= φj |Ui∩Uj

. 命 φ : X → Y 是映射族 {φi : Ui → Y }i∈Λ 在 X 上的延

拓,那么X 也是预簇态射: 设 Y 有有限仿射开覆盖 {Vj}mj=1,且有X 是拟紧的,我们能够设 {Ui}i∈Λ有有限子覆

盖 {Ui1 , ..., Uin},那么 φ在每个 Uik ∩ φ−1(Vj)上的限制是映至 Vj 的预簇态射. 进而我们利用 X 上有限开覆盖

{Uik ∩ φ−1(Vj)}并将 Y 上取定的有限开覆盖 {Vj}mj=1适当重复有限多次,便能够应用 [命题2.9]得到结论.

为了讨论方便,接下来我们考虑的基域 k默认是代数闭域,于是对 k上的仿射簇可自由地将正则函数环和

坐标环/多项式函数环视作等同, [定理1.34].

Proposition 2.11. 设 (X,OX)是代数闭域 k上的预簇,将 k视作仿射直线. 那么 X 的任何开子集 U 上任何函

数 f ∈ OX(U)满足 f : U → k是预簇态射. 特别地, f : U → k连续. 反之,如果 X 的开子集 U 到 k有预簇态

射 g : U → k,那么由 k是自身的开子集得到 g ∈ OX(U). 所以我们得到

OX(U) = {g : U → k | g是 U到仿射直线 k的预簇态射}.

有时为了方便我们将 OX(U)中函数称为 U 上正则函数. 当 X 是古典簇时,这里正则函数的术语与原先一致.

Proof. 我们应用 [命题2.9],取 {Ui}mi=1是 U 的仿射开覆盖且 Vi = k. 那么 Ok(Vi)就是 k上多项式函数全体. 因
此由 OX(Ui)是 k-代数知 [命题2.9]的条件成立,我们可应用 [命题2.9]得到结论.

Remark 2.12. 设 (X,OX) 是代数闭域 k 上的预簇. 那么每个 p ∈ X 在某个仿射开子集 U 中. 我们有仿射簇
Y ⊆ k

n使得 (U,OX |U ) ∼= (Y,OY ),记同构为 φ : U → Y ⊆ k
n. 那么我们能够设

φ(q) = (x1(q), x2(q), ..., xn(q)), ∀p ∈ U,

每个 xj : U → k都是OX(U)中函数/U 上正则函数. 称 φ是 U 上的 (局部)坐标映射, φ的分量函数 (x1, ..., xn)

是 U 上的局部坐标. 将二元组 (U,φ)称为 p所在的一个坐标卡.
因为仿射簇 Y 在 k

n 中作平移是正则同构, 所以我们总可以不妨设含 p 的坐标卡 (U,φ) 满足 φ(p) =

(0, 0, ..., 0) ∈ k
n,与流形场景一样,这时称坐标卡 (U,φ)以 p为中心.

Corollary 2.13. 设 (X,OX)是代数闭域 k上的预簇, U 是非空开子集,且 f ∈ OX(U)在 U 上取值处处非零 (或
等价地, V(f) ⊆ U 是空集). 那么 1/f ∈ OX(U). 故 V(f) = ∅当且仅当 f ∈ OX(U)可逆.

40



Proof. 如果 f ∈ OX(U)满足在 U 上取值处处非零, 那么 f−1(k×) = U 且 1/f : U → k
× 作为 f 和正则函数

k
× → k

×, x 7→ 1/x的合成,是 U 到 k
× 的预簇态射. 那么 1/f : U → k也是定义合理的预簇态射. 现在应用

[命题2.11]得到 1/f : U → k是 U 上的正则函数.

现在设 (X,OX)和 (Y,OY )是域上仿射簇,那么有仿射簇 (X×Y,OX×Y )且这是古典簇范畴中的积对象,见
[定义1.45]前的讨论. 我们来用 [命题2.9]说明这也是预簇范畴 k-Pre.Var中的积对象: 任取预簇 (W,OW )和预

簇态射 φ : W → X,ψ : W → Y . 那么我们有映射 τ : W → X × Y,w 7→ (φ(w), ψ(w)). 由于 X × Y 是仿射的,
根据 [命题2.9],我们只要验证对W 的有限仿射开覆盖 U1, ..., Um 有 fτ |Ui

∈ OW (Ui), ∀1 ≤ i ≤ m. 事实上,根
据 [命题1.50],我们有 X 上多项式函数 f1, ..., ft和 Y 上多项式函数 g1, ..., gt使得

fτ(w) =
t∑

k=1

fk(φ(w))gk(ψ(w)), w ∈ Ui.

因此由 fkφ, gkψ都是 OW (Ui)中元素可知 fτ |Ui
∈ OW (Ui). 我们把前面的讨论总结为

Lemma 2.14 ([Hum75]). 设 k是代数闭域, (X,OX)和 (Y,OY )是 k上仿射簇. 那么仿射簇 (X × Y,OX×Y )(带
上在分量上的标准投射)是预簇范畴 k-Pre.Var中的积对象.

如果 X,Y 是 k上的预簇,那么存在 X 的仿射开覆盖 {Ui}mi=1 和 Y 的仿射开覆盖 {Vj}nj=1. 于是我们得到
笛卡尔积X × Y 上的集合覆盖 {Ui × Vj}i,j . 我们定义 U ⊆ X × Y 是开子集当且仅当 U ∩ (Ui × Vj)是 Ui × Vj

作为仿射簇关于 Zariski拓扑的开子集对所有 1 ≤ i ≤ m, 1 ≤ j ≤ n成立. 由此得到 X × Y 上拓扑 (并注意到
这时每个 Ui × Vj 是开子集, [注记1.46],通过考察 (Ui × Vj) ∩ (Us × Vt)在 Ui × Vj 对应的仿射簇和 Us × Vj 的

仿射簇中的像可验证 Ui × Vj(由仿射簇给出的拓扑中)的开子集都会是 X × Y 的开子集). 对 X × Y 上任何开

子集 U ,定义 OX×Y (U)是由下述映射 f : U → k构成: f ∈ OX×Y (U)当且仅当对所有 1 ≤ i ≤ m, 1 ≤ j ≤ n有

f 在 U ∩ (Ui × Vj)上的限制是拟仿射簇 U ∩ (Ui × Vj)上的正则函数. 于是得到取值在 k中的函数层 OX×Y . 进
而由 X × Y 有有限仿射开覆盖 {Ui × Vj}i,j 得到 (X × Y,OX×Y )是预簇,易见 X × Y 在 X 上的标准投射和在

Y 上的标准投射都是满预簇态射. 利用仿射开覆盖 {Ui × Vj}i,j 和 [命题2.9],类似 [引理2.14]的讨论得到

Theorem 2.15. 设 (X,OX)和 (Y,OY )是代数闭域 k上的预簇,那么X × Y 上有典范预簇结构 (X × Y,OX×Y )

使得 (X × Y,OX×Y )带上在分量上的标准投射成为预簇范畴 k-Pre.Var中的积.

Remark 2.16. 在 [注记1.46]我们看到仿射簇的积上的 Zariski拓扑比乘积拓扑更细,所以结合预簇 X 和 Y 的

积对象X × Y 上的拓扑的构造方式可知任何X 的开子集 U 和 Y 的开子集 V 满足 U × V 是X × Y 的开子集.
这说明X × Y 上的拓扑比X 的拓扑与 Y 的拓扑的乘积拓扑更细. 此外,预簇X 的闭子集X ′和预簇 Y 的闭子

集 Y ′满足 X ′ × Y ′ = X × Y − (X −X ′)× Y −X × (Y − Y ′),自然有 X ′ × Y ′是 X × Y 的闭子集.

Remark 2.17. 根据 [定理2.15]的证明过程可知对代数闭域 k上的预簇X,Y, Z和预簇态射 f : Z → X, g : Z →
Y 有 Z → X × Y, z 7→ (f(z), g(z))也是预簇态射. 特别地,如果固定 y0 ∈ Y ,那么有预簇态射 Z → X × Y, z 7→
(f(z), y0);以及固定 x0 ∈ X 有预簇态射 Z → X × Y, z 7→ (x0, g(z)). 如果 f1 : X → Z1, f2 : Y → Z2 都是预簇

态射,那么我们得到预簇态射 X × Y → Z1, (x, y) 7→ f1(x)以及 X × Y → Z2, (x, y) 7→ f2(x)(考虑标准投射和
f1, f2的合成). 于是由积的泛性质得到 (f1, f2) : X × Y → Z1 × Z2, (x, y) 7→ (f1(x), f2(x))是预簇态射.

反之,如果映射 (f1, f2) : X × Y → Z1 ×Z2, (x, y) 7→ (f1(x), f2(x))是预簇态射, (复合上 Z1 ×Z2在分量上

的标准投射可知)自然有 f1 : X → Z1, f2 : Y → Z2 是预簇态射. 我们再指出根据 [例2.7]以及 [命题1.56]与
[定理2.15]的构造过程,通过 Segre嵌入构造的拟射影簇的积就是拟射影簇作为预簇在预簇范畴中的积.
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结合 [例2.8]可知,预簇 X 的子预簇 X1和预簇 Y 的子预簇 Y ′满足 X1 × Y1不仅是 X × Y 的子预簇, [注
记2.17], 还和 X1 与 Y1 作为预簇的积一致. 例如, 如果 U, V 分别是 X 和 Y 的仿射开子集, 那么 U × V 就是

X × Y 的仿射开子集. 特别地,我们说明对预簇 X,Y ,映射 τ : X × Y → Y × X, (x, y) 7→ (y, x)是预簇同构.
易见只需说明 τ 是预簇态射. 当 X,Y 都仿射时, 结论明显成立. 现在考虑一般的代数簇. 设 X 有仿射开覆盖

{Ui}ni=1且 Y 有仿射开覆盖 {Vj}mj=1,那么 τ : Ui × Vj → Vj ×Ui是仿射簇同构. 因为 Ui × Vj 和 Vj ×Ui分别是

X × Y 和 Y ×X 的仿射开子集,所以应用 [命题2.9]便知 τ : X × Y → Y ×X 是预簇态射.

Lemma 2.18. 设拓扑空间X有开覆盖 {Ui}i∈Γ满足对任何 i, j ∈ Γ有 Ui∩Uj 6= ∅且每个 Ui不可约,即 {Ui}i∈Γ

是两两相交的不可约开覆盖. 则 X 不可约.

Proof. 如果 A.B 是 X 的闭子集满足 X = A ∪ B, 那么每个指标 i ∈ Γ 满足 Ui = (Ui ∩ A) ∪ (Ui ∩ B). 所以
A ⊇ Ui 或 B ⊇ Ui. 现在设某个指标 i0 满足 A ⊇ Ui0 ,我们说明所有 j ∈ Γ满足 A ⊇ Uj 来得到 A = X : 任取指
标 j ∈ Γ,则条件说明 Uj ∩ Ui0 非空,所以 Uj ∩ Ui0 是 Uj ∩ A的子集, Uj ∩ Ui0 作为不可约空间 Uj 的非空开子

集也是稠密的. 现在 Uj ∩A作为 Uj 的闭子集,满足包含 Uj ∩ Ui0 在 Uj 中的闭包,这迫使 Uj ∩A = Uj .

Proposition 2.19. 设 X,Y 是代数闭域 k上的不可约预簇,那么预簇 X × Y 也不可约.

Proof. 由条件, X 的非空仿射开覆盖 {Ui}mi=1 的每项是 X 的不可约稠密开子集, Y 的非空仿射开覆盖 {Vj}nj=1

的每项是 Y 的不可约稠密开子集. 所以 X × Y 有两两相交的开覆盖 {Ui × Vj}i,j . 根据 [命题1.49], Ui × Vj 是

不可约的. 所以应用 [引理2.18]可知 X × Y 也不可约.

Remark 2.20. 设 X,Y 是代数闭域上的预簇, 并设分别有不可约分支分解 X = X1 ∪ · · · ∪ Xs 以及 Y = Y1 ∪
· · · ∪ Yt. 那么 [命题2.19]和 [注记2.16]保证了每个Xi × Yj 是X × Y 的不可约闭子集. 于是 {Xi × Yj}i,j 给出
了 X × Y 的全体不可约分支.

设 X 是代数闭域 k上的预簇,那么 [定理2.15]保证了 X ×X 也是预簇,这时称

∆(X) := {(x, x) ∈ X ×X | x ∈ X} (2.1)

为预簇X 的对角线集. 这里我们采用了X ×X 的具体构造方式. 如果仅要求 (X ×X,π1, π2)是X 和自身在预

簇范畴中的积对象,那么 ∆(X)可以定义为使得下图交换的唯一预簇态射 ∆(这是单射)的像集:

X X ×X X

X

π1 π2

∆
1X 1X

根据积对象的泛性质,检验 ∆(X)是否是 X ×X 的闭子集只需要对式(2.1)给出的具体构造检验即可. 此外,不
难看到预簇 X 的对角线集 ∆(X)和 X 作为预簇有典范的同构来视作等同.

Definition 2.21 (Hausdorff公理, [Hum75]). 设X 是代数闭域 k上的预簇,如果∆(X)是X ×X(作为预簇的
拓扑,未必是 X 上预簇拓扑的积拓扑)的闭子集,我们称预簇 X 满足 Hausdorff公理或具有分离性.

Remark 2.22. 如果预簇X ∼= Y ,那么X 满足Hausdorff公理当且仅当 Y 满足Hausdorff公理. 由于域 k上的

仿射簇 X 根据积对象的构造明显满足 Hausdorff公理,我们得到和仿射簇同构的预簇都满足 Hausdorff公理.
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Proposition 2.23. 设 X 是代数闭域 k上的预簇, Y 是子预簇 (见 [例2.8]). 若 X 有分离性,则 Y 也有分离性.

Proof. 根据 [注记2.17], Y 到X 的标准嵌入给出标准嵌入 ι : Y × Y → X ×X ,且这是预簇态射. 特别地, ι是连
续映射. 因此由 ∆(Y ) = ι−1(∆(X))立即得到结论.

Proposition 2.24. 设 X 是代数闭域 k上的预簇. 那么 X 有分离性当且仅当任何预簇 Y 以及预簇态射 φ,ψ :

Y → X 满足 {y ∈ Y | φ(y) = ψ(y)}是 Y 的闭子集.

Proof. 充分性: 命 Y = X ×X , φ = π1, ψ = π2 是 X ×X 在两个分量上的标准投射. 则 ∆(X)是闭集. 必要性:
根据 [注记2.17],我们有预簇态射 τ : Y → X ×X, y 7→ (φ(y), ψ(y)),故由

τ−1(∆(X)) = {y ∈ Y | φ(y) = ψ(y)}

以及 τ 是连续映射得到 {y ∈ Y | φ(y) = ψ(y)}是 Y 的闭子集.

Example 2.25 (带二重点的仿射直线, [Hum75]). 考虑代数闭域 k上平面 k
2的子集 (先不考虑拓扑)

X = {(x, 0) | x ∈ k
×} ∪ {(0,±1)},

记 0+ = (0, 1)以及 0− = (0,−1), U = {(x, 0) | x ∈ k
×} ∪ {0+}, V = {(x, 0) | x ∈ k

×} ∪ {0−}. 那么 U 和仿射

直线 k有典范双射: 将 x 6=∈ k
× 对应到 (x, 0) ∈ U ,将 0对应到 0+. 类似也有 V 和仿射直线 k的双射 (0对应

0−). 利用这两个双射和 [例2.7]可将 U, V 赋予同构于仿射直线的预簇结构. 于是可类似 [定理2.15]构造预簇
积对象的 “粘合”处理,在 X = U ∪ V 上赋予 X 上预簇结构使得 U, V 成为 X 的仿射开子集: 赋予 X 上拓扑

满足 X 的子集W 是开集当且仅当W ∩ U 是 U 的开子集且W ∩ V 是 V 的开子集. 对 X 的开子集W 和映射

f :W → k, f ∈ OX(W )当且仅当 f |W∩U ∈ OU (W ∩ U)以及 f |W∩V ∈ OV (W ∩ V ). 于是我们得到带 k-值函数
层的赋环空间 (X,OX),这是预簇,有仿射开覆盖 {U, V }. 下面我们说明

预簇 (X,OX)不满足 Hausdorff公理.

事实上, 对仿射直线 k, 有到 U 的预簇同构 φ : k → U 和到 V 的预簇同构 ψ : k → V , 满足 φ(x) = ψ(x) =

(x, 0), ∀x ∈ k
×以及 φ(0) = 0+, ψ(0) = 0−. 那么我们也可以把 φ,ψ视作 k到 X 的预簇态射. 这时

{x ∈ k | φ(x) = ψ(x)} = k− {0},

这不是 k的闭子集. 所以根据 [命题2.24],预簇 X 不具有分离性.

0+

0−

X

2.2 代数簇

本节固定代数闭域 k, 回忆 k 上的预簇是指带有 k-值函数环层的拟紧空间, 满足有有限仿射开覆盖, [定
义2.1]. 通常预簇不具有分离性, [例2.25],所有的仿射簇都具有分离性, [注记2.23].

Definition 2.26 (代数簇, [Hum75]). 设 (X,OX)是 k上预簇. 如果 X 具有分离性,则称 X 是 k上代数簇.
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Remark 2.27. 域 k上的仿射簇 (更一般地,同构于仿射簇的预簇)都是代数簇;域 k上代数簇的局部闭子集,即
子预簇,也是代数簇, [命题2.23]. 我们将代数簇作为预簇的子预簇称为子簇. 例如拟仿射簇都是代数簇. 之后我
们将同构于某个仿射簇的预簇称为仿射代数簇, 这是仿射古典簇的内蕴推广. 类似地, 将同构于某个射影簇的
预簇称为射影代数簇. 仿射簇和射影簇,更一般地,古典簇,都是代数簇, [推论2.32].
在 [注记2.12]中我们指出预簇可以自然谈论每点所在的坐标卡以及局部坐标,特别地也能对代数簇谈论.

Remark 2.28. 根据我们代数簇的定义, X 作为 Noether空间有不可约闭子集分解 X = X1 ∪X2 ∪ · · · ∪Xr. 根
据 [注记2.27],每个不可约分支 Xj 也是代数簇且是 X 的闭子簇.

Remark 2.29. 这里代数簇的定义采用的是函数层空间的方式而不是概形版本的定义, 所以与概形版本定义不
同的是,我们这里的代数簇的单点集都是闭子集. 我们可以证明预簇的任何单点集都是闭子集: 设X 是预簇,有
仿射开覆盖 {Ui}mi=1,那么任何 p ∈ X 满足X − {p} = ∪mi=1(Ui − {p}),这里 Ui − {p}不是 Ui就是 Ui的真开子

集. 总之我们得到 X − {p}是 X 的一些开子集的并,所以 {p}是 X 的闭子集.

Proposition 2.30 ([Hum75]). 设 X,Y 都是代数闭域 k上的代数簇,那么 X × Y 也是 k上的代数簇. 结合 [命
题2.19]知不可约代数簇的积是不可约代数簇.

Proof. 根据 [命题2.24],只要证任何预簇W 和预簇态射 φ :W → X × Y, ψ :W → X × Y 有

Z := {w ∈W | φ(w) = ψ(w)}

是W 的闭子集. 由 [注记2.17],有预簇态射 φ1 :W → X,φ2 :W → Y, ψ1 :W → X,ψ2 :W → Y 满足

φ(w) = (φ1(w), φ2(w)), ψ(w) = (ψ1(w), ψ2(w)), ∀w ∈W.

于是我们导出 Z = {w ∈ W | φ1(w) = ψ1(w)} ∩ {w ∈ W | φ2(w) = ψ2(w)}. 由 X,Y 都是代数簇知, Z 作为两
个W 的闭子集之交,依然是W 的闭子集.

下面我们希望说明代数闭域上所有古典簇都是代数簇, [推论2.32],首先我们需要

Lemma 2.31 ([Hum75]). 设 X 是 k上的预簇,如果 X 中任意两点都在某个仿射开子集中,则 X 是代数簇.

Proof. 根据 [命题2.23],需要验证对任何预簇 Y 以及预簇态射 φ,ψ : Y → X 有

Z = {y ∈ Y | φ(y) = ψ(y)}

是 Y 的闭子集. 我们通过说明任何 z ∈ Z有 z ∈ Z来证明结论. 由条件, φ(z), ψ(z)同时在某个X的仿射开子集

V 中,命 U = φ−1(V ) ∩ ψ−1(V ),则 z ∈ U . 于是由 U 是 z的开邻域得到 U ∩Z = {w ∈ U | φ(w) = ψ(w)} 6= ∅.
因为 U ∩Z 就是 ψ|U 和 φ|U 取值相同的点构成的集合,由 U 是代数簇以及 [命题2.24]得到 U ∩Z 是 U 的闭子

集. 因此, U − U ∩ Z 是 U 的开子集且和 Z 不相交. 这说明 z /∈ U − (U ∩ Z),否则 z的任何开邻域含有 Z 中元

素. 从而 z ∈ U ∩ Z ⊆ Z,我们得到 Z 是 Y 的闭子集.

Corollary 2.32 ([Hum75]). 代数闭域 k上所有古典簇都是代数簇.

Proof. 首先,古典簇都是预簇, [定理2.5]. 根据 [注记2.27],只需要说明所有拟射影簇都是代数簇. 而拟射影簇作
为射影空间的局部闭子集,我们只需要验证射影空间是代数簇. 这来自 [引理2.31]和 [例1.44].
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之后讨论代数簇之间或是代数簇与预簇之间的态射都指作为预簇的态射.

Proposition 2.33 ([Hum75]). 设 Y 是代数闭域 k上代数簇, X 是预簇.
(1)如果 φ : X → Y 是态射,那么 φ的图像 Γφ = {(x, φ(x)) | x ∈ X}是 X × Y 的闭子集.
(2)如果 φ,ψ : X → Y 都是态射,只要 φ和 ψ在 X 的某个稠密子集上取值相同,那么 φ = ψ.

Proof. (1)根据 [注记2.17],我们有预簇态射 τ : X × Y → Y × Y, (x, y) 7→ (φ(x), y),那么 τ−1(∆(Y ))是X × Y

的闭子集. 而 τ−1(∆(Y ))就是 φ的图像 Γφ.
(2) 根据预簇的积对象的泛性质, 我们有预簇态射 θ : X → Y × Y, x 7→ (φ(x), ψ(x)), 因为 Y 具有分离

性, θ−1(∆(Y )) = {x ∈ X | φ(x) = ψ(x)} 是 X 的闭子集. 故由 θ−1(∆(Y )) 包含 X 的某个稠密子集, 得到
θ−1(∆(Y )) = X . 即对所有的 x ∈ X 有 φ(x) = ψ(x).

Example 2.34. 设 k 是代数闭域, X,Y ⊆ Pn 是射影簇且 X ∩ Y 6= ∅. 那么式(1.1)说明仿射锥 C (X ∩ Y ) =

C (X) ∩ C (Y ). 记 ∆是 k
n+1 在 k

n+1 × k
n+1 中的对角线集,那么 ∆ ∩ (C (X)× C (Y ))与 C (X ∩ Y )之间有典

范同构: C (X ∩ Y ) → ∆ ∩ (C (X)× C (Y )), p 7→ (p, p),这当然是仿射簇同构.

Example 2.35 ([TY05]). 设 φ : Pn → Pm是正则映射,命 π : kn+1−{0} → k
n是标准投射. 根据 [命题1.42],对

任何 p ∈ k
n+1 − {0},存在 p的开邻域 Up和具有相同次数的齐次多项式 f0, ..., fm ∈ k[x0, ..., xn]使得 f0, ..., fm

在 Up 上取值不同时为零且 φπ(x) = [f0(x) : · · · : fm(x)], ∀x ∈ Up. 那么对另一点 q ∈ k
n+1 − {0} 也同

样有开邻域 Uq 以及在 Uq 上取值不全为零的具有相同次数的齐次多项式 g0, ..., gm 使得 φπ(x) = [g0(x) : · · · :
gm(x)], ∀x ∈ Uq. 因为Uq∩Up非空,这里 k

n+1−{0}不可约,所以存在非零常数 λ ∈ k使得 gi(x) = λfi(x), ∀0 ≤
i ≤ m,x ∈ Uq ∩ Up. 因此我们可不妨设 g0, ..., gm 在 Uq ∩ Up 上就是 f0, ..., fm,再应用 [命题2.33(2)]得到在 Uq

上都有 φπ(x) = [f0(x) : · · · : fm(x)], ∀x ∈ Uq. 这说明有 φπ(x) = [f0(x) : · · · : fm(x)], ∀x ∈ k
n+1 − {0}. 特别

地,这里次数相同的齐次多项式 f0, ..., fm 在整个 k
n+1 − {0}上都没有公共零点. 所以,我们的讨论说明存在在

整个 k
n+1 − {0}上都没有公共零点且具有相同次数的齐次多项式 f0, ..., fm ∈ k[x0, ..., xn]使得

φ(p) = [f0(p) : · · · : fm(p)], ∀p ∈ k
n+1 − {0}.

Example 2.36 (代数群, [Hum75]). 设 k是代数闭域, G是 k上的代数簇且 G上有群结构. 如果 G的乘法映射

µ : G×G→ G, (x, y) 7→ xy和求逆映射 ι : G→ G, x 7→ x−1都是态射 (这里 G×G是作为乘积簇的拓扑,而不
是 G上拓扑的乘积拓扑),则称 G是代数群. 例如 [例1.32]说明一般线性群 GLn(k)是仿射代数簇,且关于矩阵
乘法运算明显构成代数群. 代数群的闭子群依然是代数群. 如果代数群 G在代数簇 X 上有群作用 G×X → X

且该映射是代数簇态射,我们称代数群 G态射地作用在代数簇 X 上. 也称 X 是 G-代数簇或 G-簇. 如果 G-代
数簇 X 满足 G在 X 上的作用是传递的,我们称 X 是 G-齐性空间,这时 X 自身是一个 G-轨道.
例如 GLn(k)在 k

n 上的左乘作用是代数群 GLn(k)在仿射空间 k
n 上的态射作用. 又例如,任何一般线性

群 GLn+1(k)可自然作用在仿射空间 k
n+1上:

(aij)(n+1)×(n+1) ·


x1

x2
...

xn+1

 =


∑n+1

j=1 a1jxj∑n+1
j=1 a2jxj

...∑n+1
j=1 an+1,jxj

 ,
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该作用合理地诱导了 GLn+1(k)在 n维射影空间 Pn 的作用,该群作用是正则映射并且在射影空间自同构群中
的像集被称为射影变换群. 注意到 GLn+1(k) 中作用在 Pn(k) 上平凡的矩阵恰好是行列式非零的数量矩阵群
(因为满足所有非零 n + 1维列向量都是特征向量的 n + 1阶矩阵是数量矩阵),等同视作 k

×. 我们导出射影空
间 Pn 上的射影变换群同构于 GLn+1(k)/k

×,这就是射影线性群,记作 PGLn(k). 类似地,能够考虑特殊线性群
SLn+1(k)在射影空间 Pn上的作用,相应的变换群就是射影特殊线性群 PSLn(k).

Example 2.37 (Poisson代数簇, [Pol97]). 设 k是代数闭域, (X,OX)是 k上代数簇,如果结构层 OX 带上 Pois-
son结构 π, [例1.87],即 (OX , π)是 Poisson函数层,则称带上该 Poisson函数层的X是 Poisson代数簇. 由 [注
记1.123],我们可以由 Poisson代数的 Poisson理想的概念来谈论 Poisson函数层 OX 的 Poisson理想层.

Example 2.38. 设R是代数闭域 k上交换仿射半素代数,则存在仿射簇X使得O(X) ∼= R. 易见maxSpecO(X)

和 X 之间有标准的拓扑同胚 (maxSpecO(X)赋予素谱的子空间拓扑)进而能够应用 [例2.7]通过该同胚赋予
maxSpecO(X)上与 X 同构的仿射代数簇结构. 于是代数同构 O(X) ∼= R诱导 maxSpecR与 maxSpecO(X)

的拓扑同胚使得我们能够赋予maxSpecR上仿射代数簇结构,并且作为代数簇有maxSpecR ∼= X .

Example 2.39 ([Hum75]). 设X是代数闭域上仿射代数簇. 那么任何 f ∈ OX(X)满足X−V(f)也是仿射代数
簇, [例1.32]. 现在我们设 f 6= 0 ∈ OX(X)来保证 X − V(f)非空. 注意到代数簇的标准嵌入 ι : X − V(f) → X

诱导代数同态 ι∗ : O(X) → O(X − V(f)). 因为 f |X−V(f) 在 X − V(f)上可逆, [推论2.13],所以我们得到代数
同态 η : O(X)f → O(X − V(f))使得下图交换 (其中 λf 是局部化同态):

O(X) O(X)f

O(X − V(f))

λf

ι∗ η

根据 X − V(f) 的仿射簇实现, [例1.32], 以及 [定理1.34], 我们看到 η 是满射. 下面说明 η 是单射. 如果有
g/fm ∈ O(X)f 在 η 下的像是零, 那么 g 作为 X − V(f) 上正则函数是零. 于是 fg = 0 ∈ O(X), 这说明
g/fm = 0 ∈ O(X)f ,我们得到 η是单射. 故有代数同构 O(X − V(f)) ∼= O(X)f .

如果 φ : X → Y 是仿射代数簇间的态射,那么 f ∈ O(Y )诱导 fφ ∈ O(X)以及下述交换图:

X Y

X − V(fφ) Y − V(f)

φ

φ|X−V(fφ)

这里竖直方向的态射都是标准嵌入. 如果 X,Y 都不可约, φ(X) 在 Y 中稠密且 f 6= 0, 那么 X − V(fφ) 和
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Y − V(f)都是不可约代数簇且 φ(X − V(fφ))在 Y − V(f)中稠密. 并且这时我们有交换图:

O(Y )

O(Y )f O(Y − V(f))

O(X)

O(X)fφ O(X − V(fφ))

φ∗

λf

φ̃∗ (φ|X−V(f))
∗

λfφ

ηfφ

(2.2)

因为我们这里假设了 φ(X)在 Y 中稠密, 所以 φ∗ : O(Y ) → O(X)是代数嵌入且 λf 和 λfφ 也都是单射.
这时 (φ|X−V(f))

∗(O(Y − V(f))) 作为 O(X − V(fφ)) 的有限生成子代数, 也是某个仿射簇 W 的坐标环, 于是
(φ|X−V(f))

∗ 诱导代数簇态射 θ : W → Y − V(f)以及我们有态射 ψ : X → W 对应 (φ|X−V(f))
∗(O(Y − V(f)))

到 O(X − V(fφ))的嵌入. 根据 [引理1.74], ψ(X − V(fφ))在W 中稠密.

2.3 代数簇的维数

设 X 是拓扑空间,回忆 X 的维数 (或更具体地, Krull维数),被定义为

dimX := sup{n ∈ N |存在X的不可约闭子集降链X0 ⊊ X1 ⊊ · · · ⊊ Xn}, (2.3)

这里的上确界在扩充实数系 R ∪ {±∞}中取. 因此, dim∅ = −∞. 如果 p ∈ X ,称

dimpX := sup{n ∈ N |存在X的子集降链{p} ⊊ X1 ⊊ · · · ⊊ Xn且每个Xj是不可约闭子集} (2.4)

是 X 在 p 处的局部维数. 例如, 如果 X 是代数闭域 k 上仿射簇, 那么 X 的不可约闭子集降链对应于坐标环

A(X),或X 上正则函数环O(X) = OX(X)的素理想升链. 这说明 dimX = k.dimOX(X),这里 k.dimO(X)就

是坐标环 A(X)的 Krull维数. 特别地, dimk
n = n. 而仿射簇 X 的单点集都是不可约闭子集,包含 p ∈ X 的不

可约闭子集对应 A(X)的含于 mp(点 p对应的极大理想)的素理想,应用 [命题1.78]立即得到

dimpX = k.dimOX,p. (2.5)

在 [注记2.29]中指出由于我们这里考虑的代数簇不是概形语言而是函数层版本的定义,所以我们这里讨论的代
数簇的每个点都是闭点. 下面我们记录些拓扑空间的维数的基本性质.

Proposition 2.40 ([GW20]). 设 X 是拓扑空间. 我们有
(1)如果 Y 是 X 的子空间,那么 dimY ≤ dimX .
(2)如果 X 不可约, dimX < +∞,且 Y 是 X 的真闭子集,则有 dimY < dimX .
(3)如果 X 有开覆盖 {Ui}i∈Γ,那么 dimX = sup{dimUi | i ∈ Γ}.
(4)如果 X 是 Noether空间,设 X 有不可约闭子集分解 X = X1 ∪ · · · ∪Xr. 那么

dimX = sup{dimXj | 1 ≤ j ≤ r}. (2.6)
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更一般地,只要拓扑空间 X 可以表示为有限多个闭子集之并 X = X1 ∪ · · · ∪Xr,就有(2.6)成立.
(5)如果 X 是代数闭域 k上代数簇,那么 dimX = sup{OX,p | p ∈ X}.

Proof. (1)不妨设 Y 非空,任取 Y 的不可约闭子集 Y0 ⊊ Y1 ⊊ · · · ⊊ Ym,那么每个 Yj 在 X 中的闭包 Yj 是不

可约的 (如果有 X 的闭子集 A,B 使得 Yj = A ∪ B,两边交 Yj 得到 Yj = (Yj ∩ A) ∪ (Yj ∩ B),于是 Yj ⊆ A或

Yj ⊆ B). 此外,由于 Yj ∩ Y = Yj ,所以我们得到 X 的不可约闭子集链 Y0 ⊊ Y1 ⊊ · · · ⊊ Ym,所以 (1)成立.
(2)根据 (1), Y 的维数也有限,设 dimY = m并取 Y 的不可约闭子集链 Y0 ⊊ Y1 ⊊ · · · ⊊ Ym,那么由 Y 是

X 的闭子集,每个 Yj 也是X 的不可约闭子集. 此外, Y0 ⊊ Y1 ⊊ · · · ⊊ Ym ⊊ X 定义了X 的不可约闭子集链. 所
以我们得到 dimX ≥ m+ 1 > dimY .

(3) 任取 X 的不可约闭子集链 X0 ⊊ X1 ⊊ · · · ⊊ Xd, 那么存在某个 Ui 与 X0 之交非空. 那么 Ui ∩ X0

是 X0 的非空开子集, 并且也是 Ui 的不可约闭子集 (这里不可约的原因是 Ui ∩ X0 是不可约空间 X0 的非空

开子集,所以 Ui ∩ X0 的任意两个非空开子集,作为 X0 的非空开子集,存在非空交集). 同理,我们得到对每个
0 ≤ k ≤ d, Ui∩Xk是 Ui的不可约闭子集. 此外, Ui∩Xk在X中的闭包就是Xk(因为 Ui∩Xk在Xk中稠密),所
以 Ui∩X0 ⊊ Ui∩X1 ⊊ · · · ⊊ Ui∩Xd定义了 Ui的不可约闭子集降链. 我们得到 dimX ≤ sup{dimUi | i ∈ Γ},
另一个方向的不等号来自 (1). 因此 (3)成立.

(4) 我们只要验证拓扑空间 X 如果可以表示为有限多个闭子集之并 X = X1 ∪ · · · ∪ Xr, 那么 dimX ≤
sup{dimXj | 1 ≤ j ≤ r}. 不妨设 n = sup{dimXj | 1 ≤ j ≤ r}是自然数. 假设 dimX ≥ n + 1,我们有 X 的

不可约闭子集降链 F0 ⊊ F1 ⊊ · · · ⊊ Fn+1. 现在 Fk = ∪ri=1(Xi ∩ Fk)蕴含某个 Xi0 ∩ Fk = Fk. 所以 Xi0 ⊇ Fk,
得到 F0 ⊊ F1 ⊊ · · · ⊊ Fn+1定义了 Xi0 的不可约闭子集链,这与 n = sup{dimXj | 1 ≤ j ≤ r}矛盾.

(5)根据 (3)以及 [注记2.2],我们只要证每个X 的仿射开子集 U , dimU ≤ sup{(OX |U )p | p ∈ U}. 即问题
化归为只要验证 X 是仿射簇的情形即可,这是明显的.

Example 2.41 (射影空间的维数). 设 Pn 是射影空间,那么 Pn 的标准仿射开覆盖都同构于 k
n, [例1.29]. 所以,

由 dimk
n = n以及 [命题2.40(3)],我们得到 dimPn = n.

Example 2.42 (不可约仿射簇的稠密开子集). 设X是代数闭域 k上的不可约仿射簇, U 是X的稠密开子集. 我
们说明 dimX = dimU : 不妨设 U ⊊ X ,那么由 X 的主开集构成 X 的拓扑基, U 的非空开子集依然在 X 中稠

密以及 [命题2.40(1)]可知不妨设 U = X − V(f)是某个主开集. 那么可任取 p ∈ U 使得 f(p) 6= 0,得到 p对应

的 O(X)的极大理想 mp不包含 f . 特别地, mp的高度,即 X 的维数,恰好是 k.dimO(X)f = dimU .

现在我们将 [例2.42]推广至代数闭域上任何代数簇.

Proposition 2.43. 设X 是代数闭域 k上的代数簇,则 dimX 有限且对X 的稠密开子集 U 有 dimX = dimU .

Proof. 设X有仿射开覆盖U1, ..., Um,那么每个Uj∩U 是Uj的稠密开子集. 由 [命题2.40(3)], dimX有限 (因为
每个仿射簇的维数有限). 我们断言结论对仿射簇成立,一旦证明该断言,那么 dim(Uj ∩ U) = dimUj ≤ dimU ,
再次应用 [命题2.40(3)]可得 dimX ≤ dimU 便得到结论. 所以问题化归为处理 X 是仿射簇的情形.

设X 有不可约分支分解X = X1 ∪ · · · ∪Xr,那么 U ∩Xj 6= ∅, [注记1.4]. 于是 U ∩Xj 作为不可约空间Xj

的非空开子集,是 Xj 的稠密开子集. 应用 [例2.42]得到 dimXj = dim(Xj ∩ U). 现在应用 [命题2.40(4)]立即
得到 dimX ≤ dimU ,结合 [命题2.40(1)]得到结论.
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Remark 2.44. 特别地,如果 X 是代数闭域 k上不可约代数簇, X 的任何非空仿射开子集 U 满足

dimX = k.dimO(U).

在介绍不可约代数簇的有理函数域的概念后我们将看到不可约代数簇X的维数也可以用它的有理函数域K(X)

在 k上的超越次数来定义, [注记2.71].

Remark 2.45. 我们说明代数闭域 k上的 0维代数簇都是有限点集: 设 dimX = 0,考虑 X 的不可约分支分解

X = X1 ∪ · · · ∪Xr,那么每个 Xj 是 0维不可约代数簇, [命题2.40(1)]. 现在 [命题2.40(2)]迫使 Xj 是单点集.
反之, (非空)代数簇如果是有限点集,那么也是 0维代数簇. 我们得到

代数簇 X 是 0维的当且仅当 X 非空且是有限集.

Notation. 对代数簇 X 的子簇 Y ,称 codimXY := dimX − dimY 是子簇 Y 在 X 中的余维数.

Remark 2.46. 设 X 是不可约代数簇,称 X 的不可约闭子簇 D是 X 上的素除子,如果 codimXD = 1[CLS11].
例如,设 X 是不可约仿射簇并有正则函数环 O(X),那么 X 的余维数是 1的不可约闭子簇 D 对应 O(X)中零

化 D 的理想 I(D),我们有 k.dimO(X)/I(D) = dimD = dimX − 1,这说明 I(D)是 O(X)高度是 1的素理

想,反之亦然. 所以我们得到双射 {X上素除子} → {正则函数环 O(X)高度是 1的素理想}, D 7→ I(D).
将不可约代数簇 X 上所有素除子生成的自由 Abel 群记作 Div(X), 其中的元素被称为 Weil 除子. 所以

任何 Weil 除子 D 都可以表示为有限和 D =
∑

i aiDi, 这里 ai 是整数且 Di 是 X 上素除子. 当 Weil 除子
D =

∑
i aiDi满足每个系数都非负,则称 D是有效的. 因此素除子都是有效的Weil除子.

Theorem 2.47 ([Hum75]). 设 X,Y 是代数闭域 k上的代数簇,则 dimX × Y = dimX + dimY .

Proof. 设X 有仿射开覆盖 {Ui}mi=1, Y 有仿射开覆盖 {Vj}nj=1,那么 {Ui×Vj}i,j 给出X ×Y 的仿射开覆盖,且每
个 dimUi×dimVj = dimUi+dimVj ,这来自 [命题1.50]和Noether正规化引理. 现在应用 [命题2.40(3)].

Proposition 2.48 ([GW20]). 设 X 是代数闭域 k上的代数簇且 p ∈ X . 则对任何含 p的开邻域 U 有

dimpX = dimp U = k.dimOX,p.

Proof. 先证明第一个等式. 根据 [命题2.40(3)]的证明过程,任何 X 的不可约闭子集链 {p} ⊊ X1 ⊊ · · · ⊊ Xn,
由于 U ∩ Xj 6= ∅,所以 {p} ⊊ U ∩ X1 ⊊ · · · ⊊ U ∩ Xn 是 U 的不可约闭子集链,所以 dimpX ≤ dimp U . 而
dimp U ≤ dimpX 来自 [命题2.40(1)]的证明过程以及我们采用的函数层版本的代数簇定义满足单点集是闭子
集! 因此,该命题的验证归结为说明如果 U 是包含 p的仿射开子集,那么 dimp U = k.dimOX,p. 而 [命题1.78]
和 [引理1.82]说明只要说明仿射开子集 U 上函数层 OX |U = OU 在 p处的茎和 OX,p同构.

置 θ : OU,p → OX,p, [(U, f)] 7→ [(U, f)],那么这明显是单的代数同态. 任取 OX,p 中函数芽 [(V, g)],我们有
[(V, g)] = [(U ∩ V, g|U∩V )]. 而 [(U ∩ V, g|U∩V )]明显在 Imθ中,所以 k.dimOU,p = k.dimOX,p.

Remark 2.49. 根据 [命题2.48] 的证明过程可知代数簇 X 内一点 p 如果有开邻域 U, V 满足 V ⊆ U , 那么有
k-代数同构 OU,p

∼= OV,p
∼= OX,p. 因此我们可以在 p的仿射开邻域上分析 OX,p. 此外,如果 Y 是代数簇 X 的闭

子簇,那么对任何 p ∈ Y 明显有 dimp Y ≤ dimpX . 故 [命题2.48]蕴含 k.dimOY,p ≤ k.dimOX,p. 事实上,这时
标准同态 OX,p → OY,p, [(U, f)] 7→ [(U ∩ Y, f |U∩Y )]是满射. 如果 X 是仿射簇,那么这可利用 [命题1.78]以及
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O(X) → O(Y ), f 7→ f |Y 就是多项式函数的限制映射 (回忆 [定理1.34])得到. 对一般情形,取 p ∈ Y 在X 中的

仿射开子集 V ,那么有下面的交换图:
OX,p OY,p

OV,p OY ∩V,p

∼= ∼=

所以由下行是仿射代数簇的局部环以及结论对仿射情形成立可知上行的标准同态 OX,p → OY,p也是满射.
又例如,考虑代数簇X,Y 中点 p, q分别在X 和 Y 中的仿射开邻域 U, V . 那么 U × V 是 (p, q)在X × Y 中

的仿射开邻域, [注记2.17]. 所以 OU×V,(p,q) ∼= OX×Y,(p,q).

Corollary 2.50. 设 X 是代数闭域 k上的不可约代数簇且 p, q ∈ X . 那么 dimpX = dimqX = dimX .

Proof. 如果 X 是不可约仿射簇, 那么该结论来自域上的仿射整区任意两个极大理想具有相同高度. 现在设 X

是一般的不可约代数簇,那么可选取 p的仿射开邻域 U 以及 q的仿射开邻域 V . 因为X 不可约,所以 U ∩ V 非
空. 于是可选取 x ∈ U ∩ V . 利用 [命题2.48]和仿射情形的讨论, 我们有 dimp U = dimx U = dimx U ∩ V =

dimx V = dimq V . 因此 dimpX = dimqX . 因为总有 x0 ∈ X 使得 dimX = dimx0
X ,故结论成立.

Remark 2.51. 如果X,Y 是代数闭域上的不可约代数簇,那么X×Y 也不可约, [命题2.19]. 于是任给 p ∈ X, q ∈
Y ,有 dim(p,q)(X × Y ) = dim(X × Y ) = dimX + dimY = dimpX + dimq Y . 现在应用 [注记2.20]得到

对代数闭域 k上 (未必不可约的)代数簇 X,Y 和 p ∈ X, q ∈ Y ,有 dim(p,q)(X × Y ) = dimpX + dimq Y .

这里利用了 dimpX 就是 X 的所有含 p的不可约分支中维数最大的分支维数 ([推论2.50]的直接结论).

Example 2.52 (代数曲线与代数曲面, [TY05]). 如果不可约代数簇 X 满足 dimX = 1,则称 X 是代数曲线;如
果不可约代数簇 X 满足 dimX = 2,则称 X 是代数曲面. 因此,当不可约代数簇不仅是代数曲线/曲面还是仿
射/射影代数簇时,我们能够谈论仿射代数曲线/射影代数曲线/仿射代数曲面/射影代数曲面.

我们将仿射空间 k
n 中某个非常数的多项式 f ∈ k[x1, ..., xn] 决定的零点集 V(f) 称为仿射超曲面. 利用

Krull主理想定理立即得到包含 (f)的极小素理想高度都是 1. 所以 V(f)的不可约分支维数都是 n− 1,即 V(f)
是余维数是 1的等维代数簇 (即不可约分支维数相同). 反之,如果 X ⊆ k

n 是余维数是 1的等维代数簇,那么
X 的每个不可约分支 Xj 也是余维数是 1的代数簇. 设 I(Xj) ⊆ k[x1, ..., xn]是相应的非零素理想,那么有非常
数多项式 f ∈ I(Xj),特别地,有 f 的某个不可约因子 qj 在 I(Xj)中. 我们得到 Xj ⊆ V(qj),而 V(qj)作为仿射
超曲面是余维数 1的,由 [命题2.40(2)]逼迫 Xj = V(qj),所以 X 作为一些 V(qj)关于不可约分支指标 j 的并

是超曲面. 前面的讨论得到了仿射空间中超曲面关于维数的刻画:

Proposition 2.53 ([Hum75]). 设 X ⊆ k
n是仿射簇. 则 X 是仿射超曲面当且仅当 X 是余维数是 1的等维簇.

Remark 2.54. 类似地,对代数闭域 k上任何不可约仿射簇 X ⊆ k
n,并设 f ∈ k[x1, ..., xn]作为 X 上多项式/正

则函数在 O(X)中非零且不是可逆元. 利用 Krull主理想定理易证 f 在 X 中的零点集 X ∩ V(f)(非空,来自 f

的条件)的每个不可约分支 Y 都满足 codimXY = 1. 于是,对代数闭域 k上任何不可约代数簇 X 以及非空开

子集 U 上的非零且有零点的正则函数 f ∈ OX(U)(根据 [命题2.11],这等价于 OX(U)中的非零非可逆元),我们
都能够说明 V(f) ⊆ U 的每个不可约分支的维数是 dimX − 1: 设 V(f) = Y1 ∪ · · · ∪ Yr 是不可约分支分解,每
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个 Yj 是 U 的不可约闭子集. 任取不可约分支 Yj ,总有 U 的仿射开子集 V 与 Yj 相交. 于是 V ∩ Yj 是不可约空
间 Yj 的非空开子集,这说明 V ∩ Yj 在 Yj 中稠密. 特别地, V ∩ Yj 在 U 中的闭包是 Yj . 如果还有不可约分支 Ys

也和 V 相交,那么 Ys ∩ V 在 U 中的闭包是 Ys,特别地,由 Yj ⊈ Ys,得到 Yj ∩ V ⊈ Ys ∩ V . 这蕴含

所有和 V 相交的 Ys,交集 Ys ∩ V 全体给出 V(f) ∩ V 的不可约分支.

于是由 V 同构于不可约仿射簇以及 V(f)∩ V 就是 V 上正则函数 f |V 的零点集,可应用前面对不可约仿射簇情
形的讨论知每个满足 Ys ∩ V 6= ∅的子集 Ys ∩ V ,有 dim(Ys ∩ V ) = dimV − 1. 现在 Ys 作为 k上代数簇, [注
记2.27],满足 dim(Ys ∩ V ) = dimYs,这来自 [命题2.43]. 同样, U 作为不可约空间, V 是 U 的非空开子集自动

稠密,我们也有 dimV = dimU . 特别地, dimYj = dimU − 1. 现在由 1 ≤ j ≤ r的任意性得到结论.

Remark 2.55. 在 [注记2.54]我们看到代数闭域 k上任何不可约代数簇 X 以及非空开子集 U 上的非零非单位

的正则函数 f ∈ OX(U)满足 V(f) ⊆ U 的每个不可约分支的维数是 dimX − 1. 这一结论对非不可约的代数簇
一般不成立. 即使X 是等维代数簇,也未必有X 上非零且有零点的正则函数 f ,X ∩ V(f)的不可约分支维数都
dimX − 1. 例如,考虑 X = V(xy) ⊆ k

2,这是仿射平面内 x轴和 y 轴的并,所以 X 是 1维等维代数簇. 考虑
f : X → k, (x, y) 7→ x(x+ y + 1),这是 X 上非零正则函数且有零点 (0, 0). 但 X ∩ V(f) = {(−1, 0)} ∪ {(0, β) |
β ∈ k}. 即 X ∩ V(f)不是等维簇,两个不可约分支的维数分别是 0和 1.

例如对 n ≥ 2,任何 k上 n元多项式 f 只要在 k
n 中有零点,那么就有无穷多个零点: 当 f = 0时结论直接

成立. 否则, f 不是常数多项式,应用 [命题2.53]得到 V(f)的维数是 n− 1 ≥ 1,所以 V(f)不是有限集.

Example 2.56. 如果将Mn(k)与 k
n2

视作等同,那么 SLn(k)就是 detn − 1决定的仿射超曲面.

在 [注记2.54]我们看到不可约代数簇X的非空开子集U满足U上任何非零非可逆的正则函数 f ∈ OX(U)

有 V(f) ⊆ U的任何不可约分支的维数是 dimU−1. 现在取X = Pn,这是不可约代数簇, [例2.4]. 设 f : Pn → k

是非常数齐次多项式,我们称 V(f)是 Pn中的射影超曲面. 那么对 Pn的第 i个仿射开子集 Ui, V(f) ∩ Ui就是

f(x0, ..., xn)

xdi
∈ OPn(Ui),

在 Ui 中的零点集,于是根据 [注记2.54], V(f) ∩ Ui 只要非空,就是维数是 n − 1的等维代数簇 (不可能有 Ui ⊆
V(f), 因为这时蕴含 f 表示成 k[x0, ..., xi−1, xi+1, ..., xn] 上关于 xi 的多项式后关于 xi 的任何非零取值和其

余 xk(k 6= i) 的任意取值都是零函数, 结合 f 是齐次多项式得到 f 作为 k
n+1 上的函数是零, 逼迫 f = 0;

这说明 f 在 Ui 中的零点集是非空真闭子集). 根据 [注记2.54] 的讨论, 如果 V(f) ⊆ Pn 有不可约分支分解
V(f) = Y1 ∪ · · · ∪ Yr,那么对每个 Ui, Ui ∩ V(f)的不可约分支分解就是满足 Ui ∩ Yk 非空的 Ui ∩ Yk 之并. 特别
地, dimYk = dim(Ui ∩ Yk) = dimUi − 1 = n− 1. 至此我们得到

射影空间 Pn中的射影超曲面都是 n− 1维等维代数簇.

反之,如果X ⊆ Pn是 n−1维等维代数簇,设X = X1∪· · ·∪Xr是不可约分支分解. 那么每个Xj是不可约射影

簇. 总存在非常数齐次多项式 fj 零化 Xj(如果记 I(Xj)是零化 Xj 的齐次多项式生成的理想,那么 [推论1.14]
说明 I(Xj)是 k[x0, ..., xn]中素的齐次理想),于是 Xj ⊆ V(fj),且由齐次多项式的不可约因式也是齐次的 (通
过将多项式写为齐次分量的和验证)以及 Xj 的不可约性可知存在 fj 的齐次不可约因式 qj 使得 Xj ⊆ V(qj).
因为 V(qj)是齐次素理想,所以 V(qj)是不可约射影簇,且这是 Pn 的真闭子集 (因为 qj 6= 0). 根据前面的讨论,
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V(qj)作为射影超曲面,是 n − 1维代数簇. 所以 [命题2.40(2)]迫使 Xj = V(qj). 由此立即得到 X 是某个非常

数齐次多项式的零点集. 我们将前面的讨论记录为

Proposition 2.57. 设 X ⊆ Pn是射影簇. 则 X 是射影超曲面当且仅当 X 是 n− 1维等维代数簇.

Proposition 2.58 ([Hum75]). 设 X 是代数闭域 k上不可约代数簇, f1, ..., fr ∈ OX(X). 则 X ∩ V(f1, ..., fr)只
要非空,便有任何不可约分支的维数至少是 dimX − r.

Proof. 首先该结论的证明只需处理 X 是不可约仿射簇的情形: 如果仿射簇情形结论成立, 对 X ∩ V(f1, ..., fr)
的任何不可约分支 Y ,总有 X 的仿射开子集 U 满足 U ∩ Y 非零. 于是可类似 [命题2.57]的处理说明 U ∩ Y 是
U ∩ V(f1, ..., fr)的不可约分支,利用 U 同构于仿射簇便知 dimY = dimU ∩ Y ≥ dimU − r = dimX − r,这
里我们使用了 U ∩ Y 是 Y 的稠密开子集 (因为 Y 不可约)与 [命题2.43]. 下面设 X 是仿射的.

我们对 r ≥ 0 作归纳说明不可约仿射簇 X 上的正则函数 f1, ..., fr 只要满足 X ∩ V(f1, ..., fr) 非空, 任何
不可约分支的维数至少是 dimX − r. 当 r = 0时结论直接成立, 假设结论对 r − 1(r ≥ 1)的情形成立. 那么
X ∩ V(f1, ..., fr−1)的任何不可约分支维数至少是 dimX − r + 1. 设 X ∩ V(f1, ..., fr−1) = Y1 ∪ · · · ∪ Yt 是不
可约分支的分解且 Yj 和 V(fr) 的交只要非空, 就有 dimYj ∩ V(fr) ≥ dimYj − 1, [注记2.54]. 归纳假设表明
Yj ∩ V(fr)只要非空,其不可约分支的维数至少是 dimX − r. 将

X ∩ V(f1, ..., fr−1, fr) = (Y1 ∩ V(fr)) ∪ · · · ∪ (Yt ∩ V(fr))

等号右边的非空项表示为不可约分支的并可知 X ∩ V(f1, ..., fr−1, fr)可以分解为有限多个不可约闭子集的并,
每个不可约闭子集的维数至少是 dimX − r. 而这些不可约闭子集都含于某个 X ∩ V(f1, ..., fr−1, fr) 的不可

约分支中 (因为可将这些不可约闭子集简化为不可缩短分解,利用 Noether空间的闭子集的不可缩短分解的唯
一性), 并且 X ∩ V(f1, ..., fr−1, fr) 的每个不可约分支都会包含某个这样的不可约闭子集, 所以我们得到 X ∩
V(f1, ..., fr−1, fr)的每个不可约分支的维数都至少是 dimX − r.

Corollary 2.59. 设X 是代数闭域 k上等维代数簇, f1, ..., fr ∈ OX(X),则X ∩ V(f1, ..., fr)只要非空,便有任何
不可约分支的维数至少是 dimX − r.

Proof. 设X = X1∪X2∪· · ·∪Xt是不可约分支分解,那么可设有自然数 n满足 n = dimX = dimXj , 1 ≤ j ≤ t.
那么X ∩V(f1, ..., fr) = (X1 ∩V(f1, ..., fr))∪ · · · ∪ (Xt ∩V(f1, ..., fr)),根据 [命题2.58],该分解等号右边每个非
空项的不可约分支的维数至少是 dimXj−r = n−r. 故X ∩V(f1, ..., fr)可以表示为有限多个维数至少是 n−r
的不可约闭子集之并. 与 [命题2.58]的讨论一致,得到 X ∩ V(f1, ..., fr)的不可约分支维数至少是 n− r.

Example 2.60. 设X ⊆ Pn是代数闭域 k上的等维射影簇且 f1, ..., fr是 n+1元齐次多项式满足X∩V(f1, ..., fr)
非空. 下面说明 X ∩ V(f1, ..., fr)的不可约分支的维数都至少 dimX − r. 设 X = X1 ∪ X2 ∪ · · · ∪ Xt 是不可

约分支分解, 那么可设有自然数 ℓ 满足 ℓ = dimX = dimXj , 1 ≤ j ≤ t. 那么每个标准仿射开子集 Uk 满足

X ∩Uk = (X1∩Uk)∪· · ·∪ (Xt∩Uk),右边所有非空项给出X ∩Uk的不可约分支分解. 特别地,X ∩Uk同构于某
个等维仿射簇 (且维数就是 dimX),应用 [命题2.43]. 如果Xj ∩Uk和 V(f1, ..., fr)有非空交集,那么 [推论2.59]
说明Xj ∩ Uk ∩ V(f1, ..., fr)的不可约分支维数至少是 dimX − r. 所以由Xj ∩ Uk ∩ V(f1, ..., fr)的不可约分支
来自 Xj ∩ V(f1, ..., fr)的不可约分支与 Uk 的非空交 (类似 [命题2.57]的证明过程),得到 Xj ∩ V(f1, ..., fr)的
不可约分支的维数至少是 dimX − r. 这说明 X ∩ V(f1, ..., fr)能够表示为有限多个维数至少是 dimX − r 的

不可约闭子集的并. 类似 [推论2.59],我们得到 X ∩ V(f1, ..., fr)的不可约分支维数至少是 dimX − r.
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我们很容易将该结果推广到等维拟射影簇上: 设 X ⊆ Pn 是代数闭域 k 上的等维拟射影簇并设 f1, ..., fr

是 n + 1 元齐次多项式满足 X ∩ V(f1, ..., fr) 非空. 我们下面说明 X ∩ V(f1, ..., fr) 的不可约分支维数至少是
dimX − r. 首先存在 Pn 中的射影簇 X̌ 和 Pn 的开子集 U 满足 X = X̌ ∩ U . 那么 X 的不可约分支就是那些

X̌ 的与 U 相交的不可约分支和 U 的交集,这些 X̌ 的不可约分支的维数就是 dimX(因为 [命题2.43]保证了 X̌

的与 U 相交的不可约分支 X̌j 的维数就是 X̌j 的稠密开子集 X̌j ∩ U 的维数, 这是 X 的某个不可约分支的维

数). 因此删去 X̌ 的与 U 交集为空的不可约分支我们可不妨设 X̌ 是等维射影簇. 现在 X ∩ V(f1, ..., fr)的每个
不可约分支都是 X̌ ∩ V(f1, ..., fr)的某个不可约分支与 U 的交集. 所以由等维射影簇场景证明的结论以及 [命
题2.43]得到: 只要等维拟射影簇 X ⊆ Pn 与 n + 1元齐次多项式 f1, ..., fr 决定的零点集的交 X ∩ V(f1, ..., fr)
非空,就有 X ∩ V(f1, ..., fr)的不可约分支的维数都至少 dimX − r.

Proposition 2.61 (仿射锥的维数公式, [TY05]). 设 k是代数闭域, X ⊆ Pn 是非空射影簇, C (X) ⊆ k
n+1 是 X

的仿射锥 (见 [例1.15]). 那么 dimC (X) = dimX + 1.

Proof. 记 π : kn+1−{(0, ..., 0)} → Pn是标准投射,那么 π−1(X)是拟仿射簇且 [命题2.40(4)], [注记1.16]和 [命
题2.43]保证了 dimC (X) = dimπ−1(X). 所以我们只需要证明 dimπ−1(X) = dimX + 1.
先考虑 X 是不可约射影簇的情形. 这时对 Pn 的每个和 X 相交的标准仿射开子集 Ui, θi : π−1(X ∩ Ui) →

(X ∩Ui)×k
×, [b0 : b1 : · · · : bn] 7→ ([b0/bi : · · · : bi−1/bi : bi+1/bi : · · · : bn/bi], bi),这明显是代数簇间的态射, [注

记2.17]. 并且 θi给出了代数簇同构 π−1(X ∩Ui) ∼= (X ∩Ui)×k×(将X ∩Ui和 k
×都同构于仿射古典簇,可以将

θi视作 π−1(X ∩Ui)到两个仿射簇的积的正则映射,并且 θ−1
i 的分量函数都是多项式函数,所以 θ−1

i 正则). 于是
我们能够应用乘积簇的维数公式, [定理2.47],得到 dimπ−1(X∩Ui) = dim(X∩Ui)+dimk

× = dimX+1,最后
一个等号来自X∩Ui是X的非空开子集 (因为X不可约,所以这是稠密开子集). 现在所有非空的 π−1(X∩Ui)
给出 π−1(X)的开覆盖,我们应用 [命题2.40(3)]得到 dimπ−1(X) = dimX + 1.
下面我们处理一般情形. 设 X 有不可约分支分解 X = X1 ∪ · · · ∪ Xr, 那么每个 Xj 作为不可约射影簇,

根据前面不可约射影簇情形下的证明,得到 Xj 满足 dimπ−1(Xj) = dimXj + 1. 现在 π−1(X)作为闭子集族

{π−1(Xj)}rj=1的并,应用 [命题2.40(4)]导出 dimπ−1(X) = dimX + 1.

Corollary 2.62 ([TY05]). 设X ⊆ Pn是不可约射影簇满足 dimX ≥ 1,则任何 k上 n+ 1元非常数齐次多项式

f 满足 X ∩ V(f)非空且当 V(f)不包含 X 时, X ∩ V(f)的不可约分支维数都是 dimX − 1.

Proof. 我们先证明 X ∩ V(f)非空. 考虑 X 的仿射锥 C (X) ⊆ k
n+1,那么 [命题2.61]表明 dimC (X) ≥ 2. 现

在将 f 视作 C (X)上的正则函数,那么 f 在 X 中有零点 (0, 0, ..., 0),这说明 f 在 X 上不是可逆的. 如果 f 在

X 上的取值都是零,那么 X ∩ V(f) = X ,结论成立. 如果 f 在 X 上取值非零,那么 f 在仿射锥 C (X)这一不可

约仿射簇上是非零非单位的正则函数,因此 C (X) ∩ V(f)任何不可约分支的维数至少是 1, [注记2.54]. 特别地,
C (X) ∩ V(f)有异于 (0, 0, ..., 0)的点,我们得到 X ∩ V(f)非空.
现在设 V(f)不包含 X . 那么 f 在 X 上的限制是非零非单位的正则函数. 现在应用 [注记2.54].

Proposition 2.63 ([TY05]). 设X ⊆ Pn是 ℓ ≥ 0维射影簇且 f1, ..., fr 是 n+ 1元非常数齐次多项式满足 r ≤ ℓ.
则 V(f1, ..., fr) ∩X 非空,且若进一步 X 等维, V(f1, ..., fr) ∩X 的不可约分支的维数至少是 ℓ− r.

Proof. 只要证明 V(f1, ..., fr)∩X 非空,第二个结论来自 [例2.60]. 并注意到要证明 V(f1, ..., fr)∩X 非空可不妨
设 X 不可约 (取最大维数的不可约分支). 下面归纳地证明 ℓ维不可约射影簇 X 和 V(f1, ..., fr)有非空的交集.
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对自然数 r 作归纳. 当 r = 0 时结论直接成立. 当 r = 1 时, [推论2.62] 保证了 X 的每个不可约分支和

V(f1)交集非空. 假设结论对 r − 1(1 ≤ r ≤ ℓ)情形成立,那么 X ∩ V(f1, ..., fr−1)非空,并且 [例2.60]保证了
X ∩ V(f1, ..., fr−1)的每个不可约分支的维数至少是 ℓ− r + 1 ≥ 1. 所以 [推论2.62]蕴含 X ∩ V(f1, ..., fr−1)的

每个不可约分支和 V(fr)的交集非空. 特别地, V(f1, ..., fr) ∩X 非空.

Corollary 2.64. 设 X,Y ⊆ Pn是不可约射影簇且 X ∩ Y 非空. 那么 dim(X ∩ Y ) ≥ dimX + dimY − n.

Proof. 这时仿射锥 C (X ∩ Y )同构于 C (X)× C (Y )与 k
n+1的对角线集∆的交, [例2.34],且 C (X)× C (Y )也

是不可约仿射簇, [命题1.49]或 [命题2.19]. 于是 C (X) × C (Y ) ∩∆是不可约仿射簇和 n+ 1个 1次齐次多项

式定义的零点集的非空交,应用 [命题2.58]得到 dim(C (X)× C (Y )) ∩∆ ≥ dim(C (X)× C (Y ))− (n+ 1). 现
在利用 [命题2.61]和 [定理2.47]可知 dim(C (X)× C (Y )) ∩∆ ≥ dimX + dimY − n+ 1. 特别地,

dim(X ∩ Y ) + 1 = dimC (X ∩ Y ) = dim(C (X)× C (Y )) ∩∆ ≥ dimX + dimY − n+ 1.

由此得到 dim(X ∩ Y ) ≥ dimX + dimY − n.

Corollary 2.65. 设 X,Y ⊆ Pn是射影簇满足 dimX + dimY ≥ n. 则 X ∩ Y 非空.

Proof. 因为dimX+dimY ≥ n蕴含X,Y 非空,所以通过将X,Y 用它们维数最大的不可约分支 ([命题2.40(4)])
替代可不妨设 X,Y 都是不可约射影簇,那么 C (X)× C (Y )也不可约. 于是,由 dimC (X ∩ Y ) = dim(C (X)×
C (Y )) ∩∆以及 (C (X) × C (Y )) ∩∆是 k

n × k
n 中含有 (0, ..., 0)的仿射簇 (所以 (C (X) × C (Y )) ∩∆非空),

可应用 [命题2.58]或 [推论2.59]得到

dim(C (X)× C (Y )) ∩∆ ≥ dim(C (X)× C (Y ))− (n+ 1) = dimX + dimY − n+ 1,

最后一个等式来自 [命题2.61]. 所以条件表明 dim(C (X) × C (Y )) ∩ ∆ ≥ 1. 所以由 C (X ∩ Y ) ∼= (C (X) ×
C (Y )) ∩∆, [例2.34]得到仿射簇 C (X ∩ Y )不会是有限点集. 特别地, X ∩ Y 非空.

Corollary 2.66 ([TY05]). 设正整数m,n满足m < n. 那么 Pn到 Pm的态射都是常值函数.

Proof. 对任何态射 φ : Pn → Pm, 根据 [例2.35], 存在在 k
n+1 − {0} 没有公共零点且次数相同的齐次多项式

f0, ..., fm ∈ k[x0, ..., xn]使得 φ(p) = [f0(p) : · · · : fm(p)], ∀p ∈ Pn. 假设所有 fi 的次数 d ≥ 1,则m < n说明这

里齐次多项式的数目m+ 1不超过 n = dimPn,应用 [命题2.63]得到 f0, ..., fm在 Pn中有公共零点,矛盾.

回忆交换 Noether 环理论中广义 Krull 主理想定理也有 “逆版本”: 设 P 是交换 Noether 环 R 中高度为

r 的素理想, 那么存在 R 中元素 a1, ..., ar ∈ P 使得 P 是 (a1, ..., ar) 上极小素理想. 这一结论的证明来自对 r

作归纳: 当 r = 0时, P 作为零理想上的极小素理想结论直接成立. 如果高度是 r − 1(r ≥ 1)的素理想都是某

个 r − 1个元素生成的理想上的极小素理想,那么可选取 P 所包含的高度是 r − 1的素理想 Q以及 Q中元素

a1, ..., ar−1 使得 Q是 (a1, ..., ar−1)上的极小素理想. 设 Q1 = Q,Q2, ..., Qt 是 (a1, ..., ar−1)上所有极小素理想,
那么由 P ⊈ Qj 可知 P ⊈ ∪tj=1Qj . 因此存在 ar+1 ∈ P 使得 ar+1 /∈ Qj , 1 ≤ j ≤ t. 于是 (a1, ..., ar)上的极小素

理想高度只能是 r,这迫使 P 是 (a1, ..., ar)上的极小素理想. 我们利用该观察导出

Proposition 2.67 ([Hum75]). 设 X ⊆ k
n 是代数闭域 k 上的不可约仿射簇, Y 是 X 的不可约闭子簇满足

r := codimXY ≥ 1. 那么存在 f1, ..., fr ∈ k[x1, ..., xn]使得 Y 是 X ∩ V(f1, ..., fr)的某个不可约分支.
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Proof. 现在 O(X) ∼= k[x1, ..., xn]/I(X) 且 I(Y ) 是 k[x1, ..., xn] 的包含 I(X) 的素理想并且 I(Y )/I(X) 作为

仿射整区 O(X)中的素理想高度是 r. 现在应用广义 Krull主理想定理的逆版本知存在多项式函数 f1, ..., fr ∈
k[x1, ..., xn]使得 I(Y )/I(X) = (f1 + I(X), ..., fr + I(X)),得证.

2.4 代数簇间态射

本节固定代数闭域 k, 回忆我们考虑的代数簇间的态射就是作为它们作为预簇的态射, [注记2.6], 并且当
φ : X → Y 中 X 和 Y 都是古典簇 (即拟射影簇或拟仿射簇),则 φ是代数簇间态射与 φ作为古典簇之间的映

射是正则映射等价. 设 φ : X → Y 是代数闭域 k上代数簇之间的态射. 对每个 y ∈ Y ,称 φ−1(y)是 φ的一个

纤维. 因为我们这里使用的代数簇定义保证了单点集是闭的, [注记2.29],所以每个纤维 φ−1(y)是 X 的闭子集.
纤维 φ−1(y)非空当且仅当 y ∈ Imφ. 如果代数簇间的态射 φ : X → Y 满足 Imφ是 Y 的稠密子集,我们称 φ是

支配的. 如果 φ : X → Y 是代数簇之间支配态射,且 X 是不可约的,那么 Y 也是不可约的: 这时 φ(X)作为不

可约空间的像集还是不可约的. 所以 Y ,作为不可约子集 φ(X)的闭包,也是不可约的. 我们记录为

Proposition 2.68 ([TY05]). 如果 φ : X → Y 是代数簇间的支配态射且 X 不可约,那么 Y 不可约.

Proposition 2.69. 如果代数簇之间的态射 φ : X → Y 是支配的且 f, g ∈ OY (Y )满足 fφ = gφ,则 f = g.

Proof. 由条件, Y 上正则函数 f, g在稠密子集 Imφ上取值相同,现在应用 [命题2.33(2)].

Remark 2.70. 如果 φ : X → Y 是仿射簇之间的正则映射满足 φ∗ : O(Y ) → O(X), g 7→ gφ 是单射, 我们也
有 φ 是支配映射: 否则, 存在 Y 的真闭子集 Y ′ ⊇ Imφ. 这时存在 f 6= 0 ∈ O(Y ) 在 Y ′ 上取值恒是零. 于是
fφ = 0,这与 φ∗ 是单射矛盾. 所以仿射簇间态射 φ : X → Y 支配当且仅当 φ∗ : O(Y ) → O(X)是单射. 这就
是 [引理1.74]的特殊情况. 对一般交换 Noether环之间的嵌入,未必能够保证小环的 Krull维数不超过大环的
Krull维数,但对域上的交换仿射代数, Krull维数能够保序. 因此,一旦有仿射簇间的支配态射 φ : X → Y ,利
用 O(Y )可嵌入 O(X)立即得到 dimY ≤ dimX.

因为代数闭域上的代数簇满足分离性, [定义2.21], 这蕴含代数簇上取值在某个稠密子集上相同的正则函
数是相同的, [命题2.33]. 所以我们可类似之前在不可约古典簇场景一样引入有理映射以及有理函数的概念,
[定义1.63]. 现在我们在代数簇场景重复之前在古典簇场景的讨论. 设X 是代数闭域 k上不可约代数簇且 Y 是

代数簇. 考虑集合B = {(U,φ) | U是不可约代数簇X的非空开子集且φ : U → Y是代数簇间的态射},那么可在
B上定义等价关系 ∼: (U,φ) ∼ (V, ψ)当且仅当存在 U ∩ V 的非空开子集W 使得 φ|W = ψ|W . 注意到这时,如
果 (U,φ) ∼ (V, ψ),那么 φ和 ψ 在 U ∩ V 上的取值相同. 重复 [引理1.62]的讨论得到B 中任何元素 (U,φ)有

唯一的定义域最大的代表元 (利用层的粘接条件). 我们将不可约代数簇 X 和代数簇 Y 出发定义的集合 B 任

何关于 ∼的等价类称为 X 到 Y 的一个有理映射,如果该等价类定义域最大的代表元是 (U , φ),就把该有理映
射记作 φ : X 99K Y (这不是映射!),并称U 是该有理映射的定义域. 特别地, φ : U → Y 是代数簇间态射. 如果
这时 φ(U )是代数簇 Y 的稠密子集,我们称有理映射 φ : X 99K Y 是支配的. 与 [注记1.72]一样,不难看到不
可约代数簇间的支配有理映射能够谈论合成, 于是我们得到代数闭域 k 上不可约代数簇全体和不可约代数簇

间支配有理映射全体构成的范畴,记作 k-Irr.Var.Dom.
不可约代数簇 X 和代数簇 Y 任何代数簇态射 φ也可自然视作 X 到 Y 的一个有理映射,例如 X 到 X 的

恒等映射 idX . 如果 X,Y 都是不可约代数簇,那么可重复 [定义1.64]定义不可约代数簇之间的双有理等价,根
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据 [注记1.65]的讨论,这里谈论的双有理等价就是范畴 k-Irr.Var.Dom中的同构. 注意到同构的不可约代数簇
自动双有理等价,所以不可约代数簇的双有理等价是相比于代数簇同构更弱的等价关系.
同样将不可约代数簇X到仿射直线k的有理映射称为有理函数. 根据 [注记1.66]的讨论过程和 [推论2.13]

可知X 到 k的有理函数全体作为交换 k-代数是域,这被称为不可约代数簇X 的有理函数域,记作 K(X). 当X

是不可约古典簇时,这里的有理函数域概念与原先定义一致.
如果 φ : X → Y 是不可约代数簇之间的支配有理映射,那么有定义合理的代数同态

φ∗ : K(Y ) → K(X), f 7→ fφ,

因为 K (Y )是域,所以 φ∗ 自动是单射. 这定义了不可约代数簇和支配有理映射构成的范畴 k-Irr.Var.Dom到
k上交换代数范畴的逆变函子. 重复 [引理1.73]的证明过程可知不可约代数簇 X 和非空开子集 U 之间的标准

嵌入 ι : U → X 诱导代数同构 ι∗ : K(X) → K(U). 特别地,因为预簇的定义中要求局部仿射,所以

代数闭域上不可约代数簇 X 的有理函数域 K(X)和任何非空仿射开子集 U 的函数域 K(U)同构.

Remark 2.71. 由于 X 不可约,所以非空仿射开子集 U 也不可约. 特别地,仿射开子集 U 同构于某个不可约仿

射代数簇. 因此由 K(U)是 OX(U)的商域, [定理1.68],可知 K(U)作为域 k的域扩张的超越次数就是 dimU .
现在由 K(X)和 K(U)是 k-代数同构的,可知 dimX = dimU(应用 [命题2.43])就是 K(X)作为 k的域扩张

的超越次数. 在 [Hum75]中就是使用超越次数 tr.deg
k
K(X)来给出不可约代数簇 X 的维数的原始定义.

并注意到前面的讨论说明 [引理1.73]的结论对不可约代数簇也成立: 代数闭域上不可约代数簇 X 的有理

函数域 K(X)和任何非空仿射开子集 U 的函数域 K(U)同构,特别地, K(X)总是 k的有限生成域扩张.
如果将不可约代数簇 X 的非空开子集 U 的标准嵌入 ι : U → X 视作有理映射,那么该有理映射定义了 U

和 X 之间的双有理等价. 所以 X 和任何非空仿射开子集间有双有理等价,那么前面的讨论与 [定理1.76]的证
明过程保证了 k-Irr.Var.Dom到域 k上有限生成域扩张的标准逆变函子是范畴对偶. 即 [定理1.76]将不可约
古典簇和支配有理映射构成的范畴更改为不可约代数簇和支配有理映射构成的范畴结论依然成立.

根据 [注记2.71]的讨论,我们很容易将 [定理1.77]用代数簇的语言重述.

Theorem 2.72. 设 k是代数闭域, X,Y 都是 k上的不可约代数簇,那么以下等价:
(1)代数簇 X 与 Y 双有理等价.
(2)存在 X 的非空开子集 U 和 Y 的非空开子集 V 作为代数簇同构.
(3)有有理函数域作为 k-代数的同构 K(X) ∼= K(Y ).

如果代数簇之间的态射 φ : X → Y 满足 Y 的闭子簇 W 满足 φ在 φ−1(W )的某个不可约分支 Z 上的限

制,视作映射 φ : Z →W 是支配态射,则称不可约分支 Z 支配闭子簇W .
在 [注记2.70]中我们看到仿射簇之间有支配态射 φ : X → Y 蕴含 dimY ≤ dimX . 我们也有

Lemma 2.73 ([Hum75]). 设 k 是代数闭域, X,Y 是 k 上不可约代数簇且 φ : X → Y 是支配态射. 那么
dimY ≤ dimX . 特别地, dimX − dimY ∈ N.

Proof. 因为 φ是支配态射,所以诱导有理函数域间的代数嵌入 φ∗ : K(Y ) → K(X). 特别地,超越次数

tr.deg
k
K(Y ) ≤ tr.deg

k
K(X).

所以,根据 [注记2.71],我们得到 dimY ≤ dimX .
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Theorem 2.74 ([Hum75]). 设 k 是代数闭域, X,Y 是 k 上不可约代数簇且 φ : X → Y 是支配态射, 记 r =

dimX−dimY . 再设W 是 Y 的不可约闭子集. 如果 Z是 φ−1(W )的不可约分支满足 Z支配W ,那么 dimZ ≥
dimW + r. 特别地,对任何 y ∈ φ(X), φ−1(y)的每个不可约分支维数至少是 r.

Proof. 我们先说明该定理的证明可化归为处理 Y 仿射的情形: 如果结论对 Y 是仿射代数簇的情形成立,取 Y 的

仿射开子集 U 满足和W 交集非空. 那么 U ∩W 在W 中作为非空开子集自动稠密. 这时 dimY = U,dimX =

dimφ−1(U)(因为 φ是支配的,所以 φ−1(U)在 X 中是稠密开子集,应用 [命题2.43]). 易见这时 φ作为 φ−1(U)

到 U 的态射是支配的. 如果 Z 是 φ−1(W )的不可约分支满足 Z 支配 W , 那么 φ−1(U ∩W ) ∩ Z = φ−1(U) ∩
φ−1(W )∩Z 6= ∅(因为φ|Z是Z到W 的支配态射,φ(Z)和U∩W 有非空交). 因此φ−1(U∩W )∩Z = φ−1(U)∩Z
是 Z 的非空开子集,于是由 Z 是 φ−1(W )的不可约分支,可知 φ−1(U) ∩ Z 也是代数簇 φ−1(U ∩W )的不可约

分支 (类似 [命题2.57]的处理). 现在 φ可视作 φ−1(U)∩Z 到 U ∩W 的态射并且 φ−1(U)∩Z 在 Z 中的闭包是

Z 蕴含 φ(φ−1(U)∩Z)在W 中的闭包是W . 所以 φ(φ−1(U)∩Z)在W ∩U 中的闭包是W ∩U . 至此我们得到
φ作为 φ−1(U)∩Z 到 U ∩W 的态射是支配的. 即 φ−1(U ∩W )的不可约分支 φ−1(U)∩Z 支配 U ∩W . 因此如
果结论对 Y 是仿射簇的情形成立,那么 dim(φ−1(U) ∩ Z) ≥ dim(U ∩W ) + (dimφ−1(U)− dimU). 不等号左
边作为 Z 的稠密开子集的维数就是 dimZ,右边就是 dimW + r. 故只要证明 Y 仿射的情形.
前面的讨论说明只要处理 Y 是仿射代数簇的情形即可, 于是我们可不妨设 Y ⊆ k

n 是不可约仿射簇. 设
s = codimYW . 如果 s = 0,那么 [命题2.40(2)]蕴含W = Y ,于是 Z = X ,结论直接成立.

下设 s ≥ 1. 根据 [命题2.67],存在 f1, ..., fs ∈ O(Y )使得 W 是 V(f1, ..., fs) ⊆ W 的某个不可约分支. 命
gj = φ∗(fj) ∈ OX(X),则 Z ⊆ V(g1, ..., gs). 再由 Z 是 X 的不可约闭子集知 Z 落在 V(g1, ..., gs)的某个不可约
分支 Z0 中. 现在 φ(Z) ⊆ φ(Z0) ⊆ V(f1, ..., fs) ⊆ W 迫使W = φ(Z) = φ(Z0) = W . 因此 Z ⊆ Z0 ⊆ φ−1(W ).
于是由 Z 是 φ−1(W )的不可约分支以及 Z0是 φ−1(W )的不可约闭子集迫使 Z = Z0.
前面的讨论说明Z是V(g1, ..., gs)的某个不可约分支,应用 [推论2.59]或 [命题2.58]可知dimZ ≥ dimX−

s. 而 s = dimY − dimW ,所以 dimZ ≥ dimW + r.
对任何 y ∈ φ(X), {y}是 Y 的不可约闭子集且 φ−1(y)到 {y}的映射 φ是满代数簇态射 (并且该态射限制

在 φ−1(y)的每个不可约分支上都是满射). 故应用前面得到的结论以及单点集是 0维代数簇便得到 φ−1(y)的

每个不可约分支维数至少是 r.

Example 2.75 ([Hum75]). 设 k是代数闭域,考虑正则映射 φ : k2 → k
2, (x, y) 7→ (xy, y),那么

Imφ = (k2 − {(α, 0) | α ∈ k}) ∪ {(0, 0)}.

所以由 Imφ 包含了 k
2 − {(α, 0) | α ∈ k} 这一 k

2 中非空开子集 (自动稠密), 得到 φ 是支配态射. 对任何
(α, β) ∈ Imφ, 如果 β 6= 0, 那么 φ−1(α, β) 是单点集. 如果 β = 0, 即这时 (α, β) = (0, 0), 那么 φ−1(0, 0) =

{(α, 0) | α ∈ k},这同构于仿射直线. 所以 [定理2.74]中涉及的维数不等式可能是严格的.

在 [定理2.87]中我们将证明不可约代数簇间的支配态射 φ : X → Y 总满足 Y 有非空开子集 U ⊆ φ(X)使

得所有 y ∈ U 满足 φ−1(y)的每个不可约分支维数恰好是 r = dimX − dimY .

Definition 2.76 (有限态射, [Hum75]). 设 φ : X → Y 是仿射簇间的态射. 如果 O(X)是子代数 φ∗O(Y )上的

整扩张 (这也等价于有限生成 φ∗O(Y )-模),则称 φ是有限态射.
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Remark 2.77. 如果定义中的态射 φ还是支配的,那么 [引理1.74]表明 φ∗ 是单射. 并且当 X,Y 都是不可约仿

射簇时,支配有限态射 φ : X → Y 诱导函数域间的嵌入 φ∗ : K(Y ) → K(X),这也是有限域扩张,所以根据 [注
记2.71],我们有 dimX = dimY (或利用 O(X)作为 φ∗O(Y ) ∼= O(Y )的整扩张有相同的 Krull维数).

Remark 2.78. 这里介绍的有限态射概念仅限制在仿射簇范畴. 一般地,设 φ : X → Y 是代数簇间的态射,称 φ

是有限态射 [TY05],如果存在 Y 的仿射开覆盖 {Vi}i∈Γ使得每个 i ∈ Γ, φ−1(Vi)是X 的仿射开子集 (可以是空
集)并且 φ|φ−1(Vi) : φ

−1(Vi) → Vi作为仿射代数簇间的态射满足 O(φ−1(Vi))是有限生成 O(Vi)-模.

下面我们希望介绍些仿射簇间有限态射的基本性质, 由于在模有限的非交换 Noether 环场景有更一般的
结论成立, [命题2.83],这里我们使用的处理也更一般些.

Lemma 2.79 ([MR01]). 设 R是含幺环, Z 是 R的中心子环 (即含幺子环 Z ⊆ Z(R)). 如果 RZ 是有限生成模,
那么 R是 Z 上仿射代数且 R中任何元素是 Z 上整元 (即满足 Z 上某个首一多项式). 如果 p是 Z 的理想, P 是
p在 R中生成的理想,则对任何 p ∈ P ,存在 a0, ..., an−1 ∈ p使得 pn + an−1p

n−1 + · · ·+ a1p+ a0 = 0.

Proof. 首先回忆交换代数中的一个经典结果是对含幺交换环 Z 上任何有限生成模 M 以及理想 I , 如果 φ ∈
EndZM 满足φ(M) ⊆ IM ,那么存在正整数 n和 a0, ..., an−1 ∈ I使得φn+an−1φ

n−1+· · ·+a1φ+a0idM = 0(这
通过取定 M 的有限生成元集利用 Cayley-Hamilton 定理不难得到). 现在回到该引理的证明. RZ 是有限生
成模已经说明了 R 作为 Z-代数的仿射性. 因此只需验证 R 中任何元素 b 满足 Z 上某个首一多项式. 考虑
左乘变换 φ = bl : R → R, x 7→ bx, 则 φ ∈ EndZR. 在上述结果中取 I = Z, 则存在 Z 上首一多项式

f(x) = xn+an−1x
n−1+ · · ·+a1x+a0 ∈ Z[x]使得 φn+an−1φ

n−1+ · · ·+a1φ+a0idR = 0. 即 (bn+an−1b
n−1+

· · ·+ a1b+ a0)R = 0. 因此 f(b) = 0. 类似地,注意到 pR ⊆ pR,同理可证第二个结论.

如果含幺环 R有中心子环 Z,那么标准嵌入 j : Z → R诱导出连续映射 φ : SpecR → SpecZ,P 7→ P ∩ Z:
任取 R的素理想 P ,如果 a, b ∈ Z 满足 ab ∈ P ∩ Z,那么 aRb ⊆ P ,从而 a与 b中至少有一个在 P 中,这说明
P ∩ Z 是 Z 的素理想. SpecZ 的任何闭子集形如 V(b),其中 b是 Z 的理想. 若记 b在 R中生成的理想是 B,易
验证 V(B) = φ−1(V(b)),这说明 φ : SpecR→ SpecZ 是连续映射.

Proposition 2.80 ([MR01]). 设 R是含幺环, Z 是 R的中心子环满足 RZ 是有限生成模, φ : SpecR → SpecZ
是标准嵌入 j : Z → R诱导出的连续映射,那么
(1)对任给 p ∈ SpecZ,存在 P ∈ SpecR使得 P ∩ Z = p,即映射 φ是满射.
(2)如果 R的素理想和 Z 的素理想 p满足 P ∩ Z = p,则对任何 Z 的素理想 q ⊇ p,存在 R的素理想 Q ⊇ P 使

得 Q ∩ Z = q. 即 Going-up性质成立.
(3)如果 R的素理想 P,Q满足 P ⊊ Q,那么 P ∩ Z ⊊ Q ∩ Z.
(4)如果 P 是 R的本原理想 (就是极大理想),那么 P ∩ Z 是 Z 的极大理想.
(5)如果 R的素理想 P 满足 P ∩ Z 是 Z 的极大理想,那么 P 是极大理想.
(6)若记 R,Z 的 Jacobson根为 JacR, JacZ,那么 JacZ = Z ∩ JacR且 N(Z) = Z ∩N(R).
(7)固定 p ∈ SpecZ,则 Rp的极大谱是 {Qp ∈ SpecRp|Q ∈ SpecR,Q ∩ Z = p},与 φ−1(p)等势.
(8)固定 p ∈ SpecZ,则 φ−1(p)与 Spec(Rp/(pR)p)间有自然双射且 Rp/(pR)p 是 Artin环,因此 φ−1(p)是有限

集. 若进一步设 ZR可由 t个元素生成,那么 |φ−1(p)| ≤ t.
(9)如果 R是素环且 Z 是整闭整区,那么对 Z 的任何素理想 p ⊆ q以及 R的素理想 Q要求 Q ∩ Z = q,总存在
R的素理想 P ⊆ Q使得 p = P ∩ Z. 即 Going-down性质成立.
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Proof. (1)根据 [引理2.79],任何 b ∈ pR满足存在 a0, ..., an−1 ∈ p使得 bn + an−1b
n−1 + · · · + a1b + a0 = 0,所

以若进一步 b ∈ Z,则 bn ∈ p. 因此 pR ∩ Z = p. 这说明 S = {I ⊆ R|I为R的理想且满足I ∩ Z = p}是关于包
含关系的非空偏序集. 易验证 (S,⊆)的任何全序子集有上界,所以 Zorn引理保证了 S 中有极大元 P , P 满足
P ∩Z = p. 下面验证 P 是 R的素理想. 假设存在 a ∈ R−P, b ∈ R−P 满足 aRb ⊆ P ,那么 P 的极大性保证了

(a) + P 与 (b) + P 都含有 Z − p内的元素. 设 x ∈ (a) + P, y ∈ (b) + P 满足 x, y ∈ Z − p,那么 xy ∈ Z − p,从
而 xy /∈ P . 这与 xy ∈ P 矛盾. 因此 P 是 R的素理想且 P ∩ Z = p.

(2)这时 Z/p是 R/P 的中心子代数且 R/P 是有限生成 Z/(Z ∩ P )-模. 应用 (1)的结果可知 Z/Z ∩ P 的
素理想 q/p关于连续映射 φ : Spec(R/P ) → Spec(Z/p)有原像. 取 R的素理想 Q ⊇ P 使得 φ(Q/P ) = q/p. 那
么可直接验证 Q ∩ Z = q,因此 Q ⊇ P 便是满足条件的素理想.

(3)通过用R/P 替换R, Z/p替换 Z,可不妨设 P = 0,这时 P ∩Z = 0. 因此只需验证R的任何非零素理想

Q满足Q∩Z 6= 0即可. 因为这时R是素PI环,所以Q∩Z(R) 6= 0(注意Z是Z(R)的子环),取 c 6= 0 ∈ Q∩Z(R),
由R是素环知 c是正则元,所以 c在 Z上满足的最小多项式 xn+an−1x

n−1+ · · ·+a1x+a0 ∈ Z[x]满足 a0 6= 0,
于是 a0 6= 0 ∈ Q ∩ Z.

(4)这时 R/P 是本原 PI环,有中心子环 Z/(P ∩Z),根据 Kaplansky定理, Z(R/P )是域,所以 Z(R/P )作

为 Z/(P ∩ Z)的整扩张保证了 Z/(P ∩ Z)也是域. 这说明 P ∩ Z 是 Z 的极大理想.
(5)通过 (3)立即可知 P ∩ Z 是极大理想迫使 P 是 R的极大理想.
(6)将 JacR表示为 R所有本原理想之交,由 (4)得到 JacZ ⊆ Z ∩ JacR. 将 JacZ 表示为 Z 所有极大理想之

交,由 (1)和 (5)得到 JacZ ⊇ Z ∩ JacR. 因此 JacZ = Z ∩ JacR. 类似地可验证 N(Z) = Z ∩N(R).
(7)通过下面的 [命题2.81]可知 SpecRp与 {Q ∈ SpecR|Q∩(Z−p) = ∅}间有标准双射. 而Q∩(Z−p) = ∅

等价于 Q∩Z ⊆ p,所以 (3)蕴含 {Qp ∈ SpecRp|Q ∈ SpecR,Q∩Z = p}中任何素理想是 Rp的极大理想. 任取
Rp 的极大理想 Qp,这里 Q是满足 Q ∩ Z ⊆ p的素理想,下证 Q ∩ Z = p. 如果 Q ∩ Z ⊊ p,通过 (2),存在 R的

素理想 T ⊋ Q使得 T ∩ Z = p. 进而 Tp是 Rp中真包含 Qp的理想,这与 Qp是极大理想矛盾.
(8)根据 [命题2.80(7)], φ−1(p)与 Rp的极大谱 {Qp ∈ SpecRp|Q ∈ SpecR,Q ∩ Z = p}等势. 并且有

{Qp ∈ SpecRp|Q ∈ SpecR,Q ∩ Z = p} = {Qp ∈ SpecRp|Q ∈ SpecR,Q ∩ (Z − p) = ∅, Q ⊇ Rp}.

而 [命题2.80(3)]表明对任何R不同的素理想 P,Q如果 P ∩Z = Q∩Z = p,那么 P ⊈ Q或Q ⊈ P . 因此Rp的

极大谱与 Spec(Rp/(pR)p)间有双射. 在 (1)中我们看到 pR ∩ Z = p,因此域 Zp/pp是 Rp/(pR)p的中心子环且

Rp/(pR)p 是域 Zp/pp 上有限维线性空间. 因此由有限维代数的素理想数目不超过其线性维数 (见 [引理2.82])
可知 |Spec(Rp/(pR)p)| ≤ dimZp/pp

Rp/(pR)p. 于是当 ZR可由 t个元素生成时, |φ−1(p)| ≤ t.
(9)命 S = {cr ∈ R|c ∈ Z − p, r ∈ R满足r + Q是R/Q中正则元}. 那么 S 明显是 R的乘闭子集, 1 ∈ S 且

0 /∈ S. 我们断言 pR ∩ S = ∅. 若不然,设有 cr ∈ pR ∩ S. 由 [引理2.79], cr满足某个首一多项式 f(x) ∈ Z[x]使

得非首项系数均在 p中,设 f 的次数是 m. 命 E 是 R关于 Z − {0}构成乘闭子集的局部化的中心 (即 Z 的商

域),那么可设 r ∈ R在 E 上的最小多项式是 g(x)(对一般含幺交换环间的环扩张 C1 ⊆ C2,如果 φ(x) ∈ C1[x]

是首一多项式并且存在 C2 上的首一多项式 g1(x), g2(x)使得 φ(x) = g1(x)g2(x),那么 g1(x)和 g2(x)的系数都

是 C1 上整元. 所以由 r ∈ R满足整闭整区 Z 上某个首一多项式且 Z 可嵌入 E,可知 g(x)的系数都是 Z 上整

元,因此由 Z 的整闭性得到 g(x) ∈ Z[x]),次数设为 n. 那么 h(x) = cng(xc−1) ∈ Z[x]且 h(cr) = 0. 根据 g(x)

的定义, cr任何零化多项式给出 r的零化多项式,所以 cr满足的 E 上非零零化多项式次数不小于 n,从而 h(x)

是 cr 在 E 上最小多项式. 于是 h(x)整除 f(x). 结合前面的讨论, 由 f(x) ∈ Z[x]以及 Z 的整闭性, 总有首一
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多项式 k(x) ∈ Z[x]使得 f(x) = h(x)k(x). 置 Z = Z/p,记 h(x)和 k(x)在 Z 中的像是 h(x), k(x). 在 Z[x]中

f(x) = xm,所以存在正整数 t使得 h(x) = xt. 于是 t = n且 h(x)除了最高次项系数外其余系数在 p中. 因为
c /∈ p, 所以 h(x)的构造也说明 g(x)除最高次项外其余系数在 p中. 于是由 g(r) = 0 得到 rn ∈ pR ⊆ Q. 但
r +Q是 R/Q中正则元,得到矛盾. 于是我们得到 pR ∩ S = ∅. 命

T = {I ⊆ R|I是R的理想, I ⊇ pR且I ∩ S = ∅}.

前面的讨论说明 pR ∈ T . 易见 T 的任何全序子集有上界, 故应用 Zorn引理, 存在 T 的极大元 P . 那么 P 明

显是素理想: 如果有理想 I, J 使得 IJ ⊆ P 但 s ∈ I, t ∈ J 使得 I, J ⊈ P . 可不妨设 I, J ⊇ pR. 那么存在
s ∈ I ∩ S, t ∈ J ∩ S, 于是 st ∈ S, 得到矛盾. 下面说明 P ⊆ Q 以及 P ∩ Z = p. 如果 P 不含于 Q, 那么取
r0 ∈ P − Q, 得到 r0 + Q 是 R/Q 的正则元, 进而 r0 = 1 · r0 ∈ S, 和 P 的构造矛盾. 因此 P ⊆ Q. 要说明
P ∩ Z = p只需说明 P ∩ Z ⊆ p. 若不然, P 中含有 Z − p中元素,和 P ∩ S = ∅矛盾.

Proposition 2.81. 设 R是含幺环,若乘闭子集 S ⊆ Z(R),那么有双射

φ : {P ∈ SpecR|P ∩ S = ∅} → SpecRS , P 7→ PS ,

其中 PS = {λ(p)λ(s)−1|p ∈ P, s ∈ S},这里 λ : R → RS 是局部化映射. φ的逆映射将每个 RS 的素理想 q映至

{a ∈ R|存在s ∈ S使得λ(a)λ(s)−1 ∈ q}. 如果赋予 {P ∈ SpecR|P ∩ S = ∅}素谱 SpecR上 Zariski拓扑的子空
间拓扑、SpecRS 上 Zariski拓扑,则双射 φ给出同胚.

Proof. 任取 R的素理想 P ,并设 P ∩S = ∅. 易验证 PS 是 RS 的理想,下证 PS 是真理想. 如果存在 p ∈ P, s ∈ S

使得 λ(1) = λ(p)λ(s)−1,那么存在 u ∈ S 使得 (p − s)u = 0. 进而 us ∈ P ,这和 P ∩ S = ∅矛盾. 再说明 PS

是 RS 的素理想. 任何 RS 中理想都具备 IS 的形式, 这里 I 是 R 的理想, 所以只需验证若 R 的理想 I, J 满足

ISJS ⊆ PS ,则 IJ ⊆ P 即可. 利用 S ⊆ Z(R)易验证任何 a ∈ IJ 满足存在 s ∈ S 使得 as ∈ P . 于是 aRs ⊆ P ,
因此 P 是素理想以及 s /∈ P 蕴含 a ∈ P , 这说明 IJ ⊆ P . 以上讨论表明 φ 是定义合理的映射. 如果 R 的素

理想 P,Q满足均与 S 不相交以及 PS = QS , 那么易验证任何 p ∈ P 满足存在 u ∈ S 使得 pu ∈ Q, 类似前面
的讨论由 pRu ⊆ Q得到 p ∈ Q. 于是 P ⊆ Q,类似可验证 Q ⊆ P ,因此 φ是单射. 任取 RS 的素理想 q,定义
Q = {a ∈ R|存在s ∈ S使得λ(a)λ(s)−1 ∈ q},那么 Q是 R的理想且 QS = q. 通过 q是真理想易见 Q ∩ S = ∅.
如果 R的理想 I, J 满足 IJ ⊆ Q,则 ISJS ⊆ QS = q. 故 IS ⊆ QS 或 JS ⊆ QS . 不妨设 IS ⊆ QS = q,那么根据
Q的定义得到 I ⊆ Q. 所以 Q是素理想,这说明 φ是单射.

最后说明 φ是同胚. 任何 SpecRS 中闭集形如 V(IS)的形式, I 是 R的理想. 不妨设 I ∩S = ∅,那么可直接
验证 φ−1(V(IS)) = V(I) ∩ {P ∈ SpecR|P ∩ S = ∅},所以 φ是连续映射. 再说明 φ是闭映射. 不妨设 I 是 R的

与 S 不相交的理想,则有 φ(V(I) ∩ {P ∈ SpecR|P ∩ S = ∅}) = V(IS),因此 φ是闭映射.

Lemma 2.82. 设 k是域,那么对任何有限维 k-代数 A, |SpecA| ≤ dimkA.

Proof. 首先回忆任给左 Artin环 R,若 JacR为 R的 Jacobson根,那么 R的任何极大理想都包含 JacR,由此不
难看出 R的极大谱与 Artin半单环 R = R/JacR的极大谱间有双射. 根据Wedderburn-Artin定理, R可分解
为有限多个 Artin单环 Rk 的积：R ∼= R1 ×R2 × · · · ×Rm. 因此 R的极大理想数目恰好m个. 现取 R = A是

域 k上有限维代数,那么 m自然不超过 R/JacR的 k-线性维数. 因此 A的极大理想数目不超过 dimkA. 故 A

的素谱、极大谱以及本原素谱的元素数目都不超过 A的线性维数.
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Proposition 2.83 ([BG02]). 设 R是含幺环, Z是 R的中心子环满足 RZ 是有限生成模, φ : SpecR→ SpecZ是
标准嵌入 j : Z → R诱导出的连续映射,即 φ : SpecR→ SpecZ,P 7→ P ∩ Z. 根据 [命题2.80], φ是满连续映射
并且限制在极大谱层面有满连续映射 φ′ : maxSpecR→ maxSpecZ,M 7→M ∩Z. 如果 Z 是Noether环 (例如
当 R是域上仿射代数),那么 φ与 φ′均为闭映射 (即把闭集映至闭集).

Proof. 先说明 φ是闭映射,任取 SpecR的闭子集 V = V(I),可不妨设 I 是半素理想 (否则用所有含 I 素理想之

交替换 I),我们断言 φ(V ) = {p ∈ SpecZ|I ∩ Z ⊆ p} = V(I ∩ Z). 一旦证明此断言立即得到 φ是闭映射.
记 W = V(I ∩ Z), 明显 φ(V ) ⊆ W . 反之, 如果 p ∈ W , 即 I ∩ Z ⊆ p. 注意到 R 作为有限生成 Z-

模一定是双边 Noether 环, 故 R 中包含 I 的极小素理想只有有限多个, 设为 P1, ..., Pt. 现在由 I 的半素性知

I = P1 ∩ P2 ∩ · · · ∩ Pt. 所以存在某个 I 上极小素理想 Pk 使得 Z ∩ Pk ⊆ p. 应用 [命题2.80(2)]便知存在 R的

素理想 Q ⊇ Pk 使得 φ(Q) = p. 特别地, Q ⊇ I ,因此 Q ∈ V . 由此得到 φ(V ) = W .
还需要证明 φ′也是闭映射. 设 V ′是 R中所有包含半素理想 I 的极大理想构成的集合. 记W ′是 Z 中所有

包含 I ∩Z 的极大理想构成的集合. 我们通过说明 φ′(V ′) = W ′来得到 φ′是闭映射. 而这由 [命题2.80(4)], [命
题2.80(5)]以及前面关于 φ的讨论知结论明显成立.

现在我们设 φ : X → Y 是仿射簇间的有限支配态射,那么 φ∗ : O(Y ) → O(X)是单射. 直接验证有交换图

X Y

maxSpecO(X) maxSpecO(Y )

∼=

φ

∼=

(φ∗)−1

所以应用 [命题2.83]以及上图的交换性便知

Proposition 2.84 ([Hum75]). 如果 φ : X → Y 是仿射簇间的支配有限态射,那么 φ是满射且为闭映射.

Remark 2.85. 保持 [命题2.84]的记号与假设,则对任何 X 的非空闭子集 Z,记 ι : Z → X 是标准嵌入, φ|Z =

φι : Z → Y 也是有限态射: 根据条件, 通过代数同态 φ∗ 将 O(X) 视作 O(Y )-模后, O(X) 是有限生成 O(Y )-
模. 这时 (φι)∗ = ι∗φ∗ 使得 O(Z) 可视作 O(Y )-模. 只要验证 O(Z) 作为 O(Y )-模是有限生成的. 注意到
ι∗ : O(X) → O(Z)不仅是满代数同态,也是 O(Y )-模同态. 特别地, O(Z)作为 O(Y )上的模是 Noether模.

[命题2.84]表明讨论仿射簇间支配有限态射时,事实上该有限态射就是满射.

Proposition 2.86 ([Hum75]). 设 φ : X → Y 是仿射簇间的满有限态射, W 是 Y 的不可约闭子集且 Z 是

φ−1(W )的任何不可约分支. 那么 φ(Z) =W .

Proof. 根据 [注记2.85], φ : Z → Y 是有限态射, 故 φ(Z) 是 Y 的闭子簇. 这也可分解为 φ|Z : Z → φ(Z) 和

φ(Z)到 Y 的标准嵌入 ι : φ(Z) → Y 的合成,且 φ(Z) ⊆ W 是W 的不可约闭子簇. 所以,根据 [命题2.40(2)],
要证明 φ(Z) =W 只需说明 dimφ(Z) = dimW . 现在我们有下述代数同态的交换图:

O(Y ) O(Z)

O(φ(Z))

φ∗

ι∗ (φ|Z)∗
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其中 ι∗ 是满射. 所以 O(φ(Z)) 关于 (φ|Z)∗ 的像就是 φ∗O(Y ). 所以 φ|Z : Z → φ(Z) 是有限态射. 特别
地, 我们得到 O(Z)作为子代数 (φ|Z)∗O(φ(Z)) 上的有限生成模, 满足 k.dimO(Z) = k.dim(φ|Z)∗O(φ(Z)) =

k.dimO(φ(Z)) = dimφ(Z). 所以问题归结为证明 dimZ = dimW . 记W 对应的 O(Y )的半素理想是 IW ,则
O(W ) ∼= O(Y )/IW ,再分别记 IZ 和 Iφ−1(W )是O(X)的由 Z 和 φ−1(W )对应的理想,则 IZ 是 Iφ−1(W )上的极

小素理想. 那么 φ∗(IW ) ⊆ Iφ−1(W ) ⊆ IZ . 由于 φ∗诱导的 O(W )到 O(φ−1(W ))的代数同态是单射,我们也有

(φ∗)−1(Iφ−1(W )) ∩ O(Y ) = IW .

特别地, (φ∗)−1(IZ) ∩ O(Y ) = IW . 因此 φ∗ 诱导代数嵌入 O(W ) = O(Y )/IW → O(Z) = O(X)/IZ . 于是由
O(X)是有限生成 φ∗O(Y )-模可知 k.dimO(W ) = k.dimO(Z),即 dimZ = dimW .

在 [引理2.73]我们看到不可约代数簇间的支配态射 φ : X → Y 满足 r = dimX − dimY ∈ N,我们说明

Theorem 2.87 ([Hum75]). 设 φ : X → Y 是不可约代数簇间的支配态射, r = dimX − dimY . 那么存在 Y 的

非空开子集 U 使得 U ⊆ φ(X),且对 Y 的任何与 U 相交的不可约闭子集W 和 φ−1(W )的与 φ−1(U)相交的不

可约分支 Z,有 dimZ = dimW + r. 特别地,对任何 y ∈ U , φ−1(y)的每个不可约分支维数恰好是 r.
注意到W ∩ U 是 Y 的非空开子集总和 φ(X)相交,故 φ−1(W )的与 φ−1(U)相交的不可约分支总存在.

Proof. 先说明与 [定理2.74]的处理类似我们可不妨设 Y 是仿射的: 设结论对仿射情形成立. 现在 Y 的任何非

空仿射开子集和 φ(X) 交集非空 (因为 φ 是支配态射), 所以对 Y 的每个非空仿射开子集 A , 有 φ−1(A ) 是

X 的稠密开子集且 φ : φ−1(A ) → A 也是支配态射. 注意到 dimφ−1(A ) = dimX , dimA = dimY , 且
这时由结论对仿射情形成立, A 有非空开子集 U 满足 U ⊆ φ(φ−1(A )) ⊆ φ(X) 且对 A 的任何与 U 相交

的不可约闭子集 W 和 φ−1(W ) 的和 φ−1(U) 相交的不可约分支 Z 有 dimZ = dimW + r. 现在任取 Y 的

与 U 相交的不可约闭子集 W 和 φ−1(W ) 的与 φ−1(U) 相交的不可约分支 Z, W ∩ A 是 A 的不可约闭子集,
φ−1(W ∩ A ) = φ−1(W ) ∩ φ−1(A ) ⊇ Z ∩ φ−1(U) 6= ∅ 满足 Z ∩ φ−1(A ) 是 φ−1(W ∩ A ) 的不可约分支

且 Z ∩ φ−1(A ) 和 φ−1(U) ⊆ φ−1(A ) 相交. 所以我们能够应用仿射情形的结论得到 dim(Z ∩ φ−1(A )) =

dim(W ∩A )+r. 现在 Z∩φ−1(A )作为 Z的非空开子集,有 dimZ = dim(Z∩φ−1(A )), [命题2.43]. 同理也有
dimW = dim(W ∩ A ). 因此要证明该定理,可不妨设 Y 是仿射的. 而要证明 Y 是仿射代数簇情形的结论我们

也可以不妨设X也是仿射的: 首先可选取X的有限仿射开覆盖 {Xj}mj=1,那么φ|Xj
: Xj → Y 是不可约代数簇

间的支配态射,如果结论对 X 和 Y 都仿射的情形成立,我们有 Y 的非空开子集 Uj 满足 Y 的任何与 Uj 相交的

不可约闭子集W 和 (φ|Xj
)−1(W )的与 (φ|Xj

)−1(Uj)相交的不可约分支Zj ⊆ Xj有 dimZj = dimW +r. 现在
命 U = ∩mj=1Uj ,这是 Y 的非空开子集且任何 Y 和与 U 相交的不可约闭子集也和 Uj 相交. φ−1(U) ⊆ φ−1(Uj)

满足任何 φ−1(W )的和 φ−1(U)相交的不可约分支 Z 也和所有的 φ−1(Uj)相交. 特别地,我们总有某个指标 k

满足 Z ∩ φ−1(Uk) ∩ Xk = Z ∩ (φ|Xk
)−1(Uk)非空 (因为 {Xj}mj=1 是 X 的开覆盖). 于是 Z ∩ (φ|Xk

)−1(W )是

(φ|Xk
)−1(W ) 的和 (φ|Xk

)−1(Uk) 相交的不可约分支. 我们得到 dim(Z ∩ (φ|Xk
)−1(W )) = dimW + r. 现在

Z ∩ (φ|Xk
)−1(W )作为 Z 的非空开子集,和 Z 有相同维数,我们得到 dimZ = dimW + r.

前面的讨论表明该定理的证明可以约化为处理 X 和 Y 都是不可约仿射代数簇的情形. 现在 φ∗ : O(Y ) →
O(X) 作为代数嵌入, 诱导商域的嵌入 Frac(O(Y )) ∼= Frac(φ∗O(Y )) ⊆ Frac(O(X)). 现在 O(X) 作为有限生

成 k-代数也是有限生成 φ∗O(Y )-代数. 所以 O(X)关于 φ∗O(Y )非零元全体构成的乘闭子集的局部化R,是域
Frac(φ∗O(Y ))上的有限生成代数. 利用 Noether正规化引理得到存在 x1, ..., xt ∈ O(X)使得

Frac(φ∗O(Y ))[x1, ..., xt]
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是 Frac(φ∗O(Y )) 上的多项式代数且 R 是 Frac(φ∗O(Y ))[x1, ..., xt] 上的有限生成模. 特别地, 利用 O(X) 是

有限生成 k-代数,可适当选取 f 6= 0 ∈ O(Y )使得 (φ∗O(Y ))fφ[x1, ..., xt] ⊆ O(X)fφ 是整扩张. 根据 [例2.39],
O(X)fφ就是X−V(fφ)上的正则函数环, (φ∗O(Y ))fφ就是O(Y −V(f))在 (φ|X−V(f))

∗下的像. 由 [命题2.43],
dimY = k.dim(φ∗O(Y ))fφ以及 dimX = k.dimO(X)fφ. 所以

t+ dimY = k.dimFrac(φ∗O(Y ))[x1, ..., xt] = k.dimO(X)fφ = dimX.

因此 t = r. 于是图(2.2)蕴含我们有 φ|X−V(fφ) : X − V(fφ) → Y − V(f)的态射分解

X − V(fφ) Y − V(f)

T ∼= (Y − V(f))× k
r

φ|X−V(fφ)

ψ θ

其中 ψ是有限支配态射,并且这里 θ如果视作 (Y − V(f))× k
r 到 Y − V(f)的态射就是标准投射. 因此我们可

不妨设 ψ的陪域以及 θ的定义域就是 (Y − V(f))× k
r. 根据 [命题2.84], ψ是满射. 所以

态射 φ|X−V(fφ) : X − V(fφ) → Y − V(f)是仿射代数簇之间的满射.

我们命 U = Y −V(f),这是 Y 的非空开子集且 U ⊆ φ(X). 下面验证 Y 的任何与 U 相交的不可约闭子集W 和

φ−1(W )的与 φ−1(U)相交的不可约分支 Z,有 dimZ = dimW + r.
现在W ∩ U 定义了 U = Y − V(f)的不可约闭子集,有 dimW = dimW ∩ U , [命题2.43]. 此外 φ−1(W ) ∩

(X − V(fφ)) = (φ|X−V(fφ))
−1(W ∩ U)作为 X − V(fφ)的非空闭子集,满足 Z ∩ (X − V(fφ))也非空 (因为

φ|X−V(fφ) 是满射),于是 Z ∩ (X − V(fφ))定义了 φ−1(W ) ∩ (X − V(fφ))的不可约分支. 前面的态射 ψ 诱导

了态射 ψ : φ−1(W ) ∩ (X − V(fφ)) → (W ∩ U)× k
r,这是满有限态射,所以应用 [命题2.86]得到

ψ(Z ∩ (X − V(fφ))) = (W ∩ U)× k
r.

因为 ψ在 φ−1(W ) ∩ (X − V(fφ))上的限制也是有限的, [注记2.85],所以利用 [注记2.77]可知

dimZ = dim(Z ∩ (X − V(fφ))) = dim(W ∩ U)× k
r = dimW + r.

所以我们构造的 Y 的开子集 U = Y − V(f)满足要求.

Remark 2.88. 设 φ : X → Y 是不可约代数簇间的态射且 φ是双射,那么 [定理2.87]中的 r = 0,进而 dimX =

dimY . 并且由 [定理2.87]的证明过程 (约化到仿射场景的讨论以及 ψ : X −V(fφ) → (Y −V(f))× k
r 是有限

态射)可知,由 r = 0,存在X 的非空仿射开子集 U 和 Y 的非空仿射开子集 V 使得 φ(U) ⊆ V 且 φ : U → V 是

仿射代数簇间的有限态射.

Corollary 2.89 ([TY05]). 设 φ : X → Y 是非空代数簇间的态射, r是自然数. 那么
(1)如果对所有 y ∈ Y 有 dimφ−1(y) ≤ r,则 dimX ≤ r + dimY .
(2)如果 φ是支配态射且对所有 y ∈ Imφ有 dimφ−1(y) = r,则 dimX = r + dimY .

Proof. 我们设 Y = Y1 ∪ · · · ∪ Yn 是 Y 的不可约分支分解, Xij 表示 X 的闭子簇 φ−1(Yi)的第 j 个不可约分支.
那么 φ诱导每个不可约代数簇 Xij 到 Yi 的代数簇态射,注意到 φ(Xij)是 Yi 的不可约子集,所以 φ(Xij)是 Yi

的不可约闭子簇. 于是 φij : Xij → φ(Xij)是不可约代数簇间的支配态射.
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(1)任取 z ∈ φ(Xij),那么 [定理2.74]说明 dimXij ≤ dimφ(Xij) + dimφ−1(z) ≤ r + dimY . 现在由 X

是所有 Xij 的并以及 [命题2.40(4)],得到 dimX ≤ r + dimY .
(2)设 Y 的不可约分支 Yi0达到最大维数,即有 dimYi0 = dimY . 则有 Y 的非空开子集 Yi0−∪k ̸=i0Yk(自动

在 Yi0中稠密). 所以由 Yi0的非空开子集和 (Yi0−∪k ̸=i0Yk)的交集是 Y 的非空开子集可知 (Yi0−∪k ̸=i0Yk)∩Imφ
和 Yi0 的任何非空开子集交集非空. 进而 (Yi0 − ∪k ̸=i0Yk) ∩ Imφ在 Yi0 中稠密. 于是 φ−1(Yi0) → Yi0 , x 7→ φ(x)

是支配态射. 于是由 ∪jφ(Xi0j) = Yi0 得到总有 Xi0j0 支配 Yi0 . 不妨设设 Xi01, ..., Xi0s 是所有支配 Yi0 的 Xij .
我们用反证法说明存在 1 ≤ j ≤ s使得 dimXi0s = r + dimY ,再结合 (1)得到结论.

假设 dimXi0j < r+dimYi0对所有 1 ≤ j ≤ s成立,那么对每个 1 ≤ j ≤ s,都有 Yi0的开子集Uj ⊆ φ(Xi0j)

使得 Uj 中所有点 y满足 dim(φ−1(y) ∩Xi0j) = dimXi0j − dimYi0 < r, [定理2.87]. 于是将所有 Ui0 和所有不

支配 Yi0 的 Xi0k 诱导的 Yi0 的非空开子集 Yi0 − φ(Xi0k)取交 (这是不可约空间 Yi0 的有限多个非空开子集的

交)非空,选取其中元素 y,则 φ−1(y)和不支配 Yi0 的Xi0k 的交是空集,而和每个Xi0j , 1 ≤ j ≤ s的交集是维数

严格小于 r的 φ−1(y)的闭子簇. 所以 dimφ−1(y) < r. 这与条件矛盾.

回忆拓扑空间 X 到 N(带有离散拓扑) 的映射 f : X → N 被称为是上半连续的, 如果对任何自然数 n,
集合 {x ∈ X | f(x) ≥ n} 是 X 的闭子集. 现在设 φ : X → Y 是不可约代数簇间的态射且 x ∈ X . 那么
x ∈ φ−1(φ(x)),我们命 e(x)是 φ−1(φ(x))的所有不可约分支中包含 x的分支的维数最大值,即

e(x) = dimx φ
−1(φ(x)).

那么我们得到定义合理的映射 e : X → N, x 7→ e(x). 我们来说明映射 e是上半连续的. 首先 φ(X)是 Y 的不可

约子集蕴含 φ(X)是 Y 的不可约闭子集. 而每个 x ∈ X , φ−1(φ(x))也可以使用将 φ视作 X 到 φ(X)的态射来

定义,所以将 Y 替换为 φ(X)我们可不妨设 φ : X → Y 是不可约代数簇间的支配态射. 命 r = dimX − dimY ,
这是自然数, [引理2.73]. 对每个自然数 n, 命 Sn(φ) := {x ∈ X | e(x) ≥ n}. 下面对 ℓ = dimY 作归纳来证

明 Sn(φ) 是 X 的闭子集. 如果 ℓ = 0, 那么 Y 是单点集, [注记2.45]. 那么对每个 x ∈ X , φ−1(φ(x)) = X 且

e(x) 就是 dimX , 得到结论成立. 下面设结论对不超过 ℓ − 1(ℓ ≥ 1) 的情形成立. 根据 [定理2.74], 当 n ≤ r

时, Sn(φ) = X , 所以我们只需处理 n > r 的情形. 根据 [定理2.87], 存在 Y 的非空开子集 V ⊆ Imφ 使得
φ−1(V ) ∩ Sn(φ) = ∅. 即

Sn(φ) ⊆ X − φ−1(V ).

于是有 Y 的真闭子集 Y −V . 不妨设 Y −V 非空,否则 Sn(φ) ⊆ X−X = ∅结论直接成立. 于是可设W1, ...,Ws

是 Y − V 所有的不可约分支,那么每个 dimWj < dimY , [命题2.40(2)]. 对每个Wj ,如果 φ−1(Wj)非空,可考
虑 φ−1(Wj)的不可约分支 Zjk,命 φjk : Zjk → Wj 是 φ的限制. 根据归纳假设, Sn(φjk)是 Zjk 的闭子集,那么
这也是 X 的闭子集. 现在任取 x ∈ X − φ−1(V ),任何 φ−1(φ(x))的包含 x的不可约分支 T 会含于某个 Zjk,那
么 T 也是 φ−1

jk (φjk(x)) ⊆ Zjk 的含 x的不可约分支. 这说明 Sn(φ)是这些 Sn(φjk)的并. 于是 Sn(φ)作为 X 的

有限多个闭子集的并依然是闭子集. 由此我们得到

Theorem 2.90 (纤维的维数诱导函数的上半连续性, [TY05]). 设 φ : X → Y 是不可约代数簇之间的态射. 则映
射 X → N, x 7→ dimx φ

−1(φ(x))是上半连续的.

现在我们放宽 [定理2.90]中考虑态射的定义域的条件.

Corollary 2.91. 设X,Y 是代数簇且 Y 不可约, φ : X → Y 是代数簇态射. 则映射X → N, x 7→ dimx φ
−1(φ(x))

是上半连续的.
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Proof. 不妨设 X 非空,进而可谈论 X 的不可约分支分解 X = X1 ∪ · · · ∪Xt. 那么 φi : Xi → Y, x 7→ φ(x)是不

可约代数簇间的态射. 对每个自然数 n,命 Sn(φ) = {x ∈ X | dimx φ
−1(φ(x)) ≥ n}. 则 Sn(φ) = ∪ti=1Sn(φi). 根

据 [定理2.90],有 Sn(φi)是 Xi的闭子集. 故 Sn(φ)也是 X 的闭子集.

2.5 可构造集与 Chevalley定理

回忆拓扑空间的一个子集是局部闭的当且仅当该子集可表示为一个闭子集和一个开子集的交. 拓扑空间
的子集被称为可构造的,如果该子集是有限多个局部闭子集的并. 关于可构造集的一个基本事实是

Lemma 2.92 ([An12]). 设拓扑空间 X 的子集 Y 是可构造的,那么 Y 包含 Y 的某个稠密开子集.

Proof. 我们可设 Y = ∪ki=1Yi, 每个 Yi 是 X 的局部闭子集. 命 Zi = Yi − Yi 以及 Z = ∪ki=1Zi. 我们证明
W = Y − Z 含于 Y 且W 是 Y 的稠密开子集. 先验证W ⊆ Y : 现在

Y ∪ Z = (∪ki=1Yi) ∪ (∪ki=1Zi) = ∪ki=1(Yi ∪ Zi) = ∪ki=1Yi = Y .

因此W ⊆ Y . 因为 Yi是 X 的局部闭子集,所以 Yi是 Yi的开子集,这说明 Zi是 Yi的闭子集. 由此得到 Z 是 Y

的闭子集,所以W 是 Y 的开子集. 因此要完成引理证明只需再验证W 在 Y 中稠密. 若不然,则 Z 含有 Y 的非

空开子集. 可设正整数 i0 是满足 ∪i0i=1Zi 含有某个 Y 的非空开子集的最小正整数. 设 ∪i0i=1Zi 含有 Y 的非空开

子集 U . 我们断言 U ⊈ Zi, ∀1 ≤ i ≤ i0. 若不然,则 U ⊆ Zi 说明 U 和 Yi 交集为空,这与 Yi 作为 Yi 的稠密开子

集矛盾. 断言得证,特别地,得到 i0 ≥ 2. 现在 U ⊈ Zi0 说明 U −Zi0 是 ∪i0−1
i=1 Zi所包含的 Y 的非空开子集. 这与

正整数 i0的选取矛盾. 这说明W 在 Y 中稠密.

本节考虑的代数簇依然默认是代数闭域 k上的.

Theorem 2.93 (Chevalley定理, [Hum75]). 设 φ : X → Y 是代数簇间的态射,则 φ将可构造集映至可构造集.

Proof. 根据可构造集的定义,代数簇的可构造子集都是子簇. 所以,通过将 φ限制在考虑的可构造集上,我们只
需要证明 φ(X) 是 Y 的可构造子集即可. 此外, 定理的证明可约化到处理 X,Y 都是不可约代数簇的情形: 设
X = X1 ∪ · · · ∪Xs 和 Y = Y1 ∪ · · · ∪ Yt 是不可约分支分解 (这里默认 X,Y 非空,否则结论明显成立),那么对
X 的任何可构造子集 C ,每个 C ∩Xj 是 Xj 的可构造子集且 φ(C ∩Xj) ⊆ φ(Xj)作为不可约空间 φ(Xj)的子

空间含于某个 Yk. 结合 φ(C ) = ∪sj=1φ(C ∩Xj)可知只需处理 X,Y 都不可约的情形.
下面我们对 d = dimY 作归纳证明任何不可约代数簇间的态射 φ : X → Y 满足 φ(X)是 Y 的可构造子

集. 当 d = 0时, Y 是单点集,结论直接成立. 假设结论对不超过 d − 1(d ≥ 1)的情形都成立. 如果 φ不是支配

态射,那么 φ(X)是不可约空间 Y 的真闭子集,由 [命题2.40(2)], dimφ(X) ≤ d− 1,所以可应用归纳假设得到
φ(X)是不可约空间 φ(X)的可构造子集 (回忆 Y 的不可约子集 φ(X)的闭包总不可约),进而也是 Y 的可构造

子集. 所以要完成定理证明我们只需要考虑 φ是支配态射的情形.
根据 [定理2.87],存在 φ(X)包含的某个 Y 的非空开子集 U . 这时, Y − U 作为不可约空间 Y 的真闭子集,

有 Y −U 的所有不可约分支W1, ...,Wt的维数严格小于 d = dimY . 根据归纳假设, φ−1(Wi)的每个不可约分支

Zij都满足φ(Zij)是Wi的可构造子集. 故每个φ(Zij)也是 Y 的可构造子集. 于是φ(X) = U∪φ(φ−1(Y −U)) =

U ∪ (∪i,jφ(Zij))也是 Y 的可构造子集.
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Corollary 2.94 ([Hum75]). 设 φ : X → Y 是不可约代数簇间的支配态射, r = dimX −dimY . 如果 Y 的每个

不可约闭子集W 都满足 φ−1(W )非空且所有不可约分支维数是 r + dimW ,那么 φ是开映射.

Proof. 根据条件, Y 中任何点给出的单点集作为不可约闭子集有原像,所以 φ是满射. 并且对任何 Y 的不可约

闭子集 W 决定的原像集 φ−1(W ) 的不可约分支 Z, 有不可约分支 Z 支配闭子簇 W : 即要说明 φ(Z) 在 Y 中

的闭包是 W . 首先 φ(Z) 不可约说明 φ(Z) 在 Y 中的闭包是 W 的不可约闭子簇. 如果 φ(Z) 是 W 的真闭子

集,那么 dimφ(Z) < dimW 且条件说明 φ−1(φ(Z))每个不可约分支的维数是 r + dimφ(Z). 特别地, Z 含于
φ−1(φ(Z))的某个不可约分支,说明 dimZ ≤ r + dimφ(Z) < r + dimW ,得到矛盾.
任取 x ∈ X 以及 x的开邻域 U ,并记 y = φ(x)以及 V = φ(U). 我们证明 y 是 V 的内点. 如果 y 不是 V

的内点,那么 y 在 Y − V 的闭包中. Chevalley定理表明 V 是可构造的,所以 Y − V 也是可构造的. 故存在 Y

的开子集 O和闭子集 C 使得 y是 O ∩ C 的闭包 (并且我们选取使得 O ∩ C ⊆ Y − V )中的元素. 因为 C 是闭

子簇,我们通过将 C 替换为 C 的含 y不可约分支可不妨设 C 是不可约的. 进而 O ∩ C 在 C 中稠密. 现在 C 作

为 Y 的不可约闭子集,条件表明 C ′ = φ−1(C)所有不可约分支具有相同维数,且前面我们指出 C ′ 的每个不可

约分支都支配 C. 因此 C ′ 的每个不可约分支都和 O′ = φ−1(O)有非空交集,这也说明 O′ ∩ C ′ 是 C ′ 的稠密子

集. 而 O′ ∩ C ′ = φ−1(O ∩ C). 前面根据 O,C 的选取, O ∩ C ⊆ Y − V = Y − φ(U),故 O′ ∩ C ′ ⊆ X − U . 于是
我们得到 C ′ ⊆ X − U . 特别地, x /∈ U ,矛盾.

2.6 向量丛初步

Definition 2.95 (代数簇上的向量丛, [CLS11]). 设 X 是代数簇, E 也是代数簇并且有态射 π : E → X . 固定自
然数 r. 称二元组 (E, π)是X上秩为 r的向量丛,如果存在X的开覆盖 {Ui}i∈Λ以及代数簇同构 ϕi : π

−1(Ui) →
Ui × k

r 使得对标准投射 pUi
: Ui × k

r 有交换图 (那么定义中的 π自然是满射):

π−1(Ui) Ui × k
r

Ui

ϕi

π pUi

(2.7)

以及对任何指标 i, j ∈ Λ,存在 Ui ∩ Uj 到仿射代数簇 GLr(k)的代数簇态射 Gij : Ui ∩ Uj → GLr(k)使得

(Ui ∩ Uj)× k
r

π−1(Ui ∩ Uj)

(Ui ∩ Uj)× k
r

ϕi|π−1(Ui∩Uj)

ϕj |π−1(Ui∩Uj)

id×Gij
(2.8)

交换,这里 id×Gij : (Ui ∩ Uj)× k
r → (Ui ∩ Uj)× k

r, (p, v) 7→ (p,Gij(p)v).
有时也将向量丛 (E, π)用态射 π : E → X 指代, E 被称为该向量丛的全空间,X 被称为底空间. 如果X 的

开子集 U 到 E 有代数簇态射 s : U → E 满足 πs = idU ,则称 s是向量丛 E 在 U 上的截面. 当 U = X 时,称相
应的截面是 E 的整体截面 (这里我们均要求是代数簇态射!).
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Remark 2.96. 当 r = 0时, kr 理解为 {0},这时 ϕi : π
−1(Ui) → Ui × {0}, p 7→ (π(p), 0). 这时定义中的 Gij 可理

解为将 Ui ∩ Uj 中所有点对应到 {0}上恒等映射. 当 r = 1时,秩为 1的向量丛被称为线丛. 这时定义中的 Gij

变为代数簇态射 Gij : Ui ∩ Uj → k
×. 一般将 Gij 称为转移 (矩阵)函数.

根据定义, Gij 被 {(Ui, ϕi)}i∈Λ决定,且对任何指标 i, j, k ∈ Λ有

Gij |Ui∩Uj
= G−1

ji |Ui∩Uj
, (2.9)

Gik|Ui∩Uj∩Uk
= (Gij ◦Gjk)|Ui∩Uj∩Uk

, (2.10)

这里 Gij ◦Gjk 表示映射 Ui ∩ Uj ∩ Uk → GLr(k), p 7→ Gij(p)Gjk(p),这是代数簇态射.

Remark 2.97. 保持 [定义2.95] 中的记号. 那么我们可定义代数簇态射 G−1
ij : Ui ∩ Uj → GLr(k) 使得对每个

p ∈ Ui ∩Uj , G−1
ij (p)是 Gij(p)的逆矩阵. 所以定义中 id×Gij : (Ui ∩Uj)× k

r → (Ui ∩Uj)× k
r 是代数簇同构.

Remark 2.98. 保持 [定义2.95]中的记号. 则只要 Ui ∩Uj 非空, ϕi|π−1(Ui∩Uj) : π
−1(Ui ∩Uj) → (Ui ∩Uj)×k

r就

是代数簇同构. 满足定义的 {(Ui, ϕi)}i∈Λ 以及其中每个代数簇同构 ϕi 被称为局部平凡性. 易见对任何 Ui 的开

子集 Vi, ϕi诱导代数簇同构 ϕi|π−1(Vi) : π
−1(Vi)

∼=→ Vi × k
r. 此外,每个局部平凡性 ϕi : π

−1(Ui)
∼=→ Ui × k

r 满足

对 p ∈ Ui有代数簇同构 ϕi|π−1(p) : π
−1(p)

∼=→ {p}×k
r. 所以我们可借助 ϕi赋予 π−1(p)上 k-线性空间结构使得

ϕi|π−1(p)成为 k-线性同构. 这时每个纤维 π−1(p)成为 r维线性空间. 并且当 p ∈ Ui ∩ Uj 时,定义给出交换图:

{p} × k
r

π−1(p)

{p} × k
r

ϕi|π−1(p)

ϕj |π−1(p)

(id,Gij)

所以 π−1(p)利用 ϕi赋予的线性空间结构和 ϕj 赋予的线性空间结构有Gij 诱导的线性同构. 具体地,设 π−1(p)i

和 π−1(p)j 分别是利用 ϕi和 ϕj 给出的线性空间,那么下面的交换图满足上下两行和右边的映射都是线性同构:

π−1(p)i {p} × k
r

π−1(p)j {p} × k
r

ϕi|π−1(p)

ϕj |π−1(p)

id (id,Gij)

特别地,恒等映射 id : π−1(p)j → π−1(p)i成为 k-线性同构,这说明 π−1(p)i = π−1(p)j ! 所以

纤维 π−1(p)上的线性空间结构不依赖于 p ∈ Ui的选取.

因此,秩是 r的向量丛 (E, π)给出定义合理的 r维线性空间族 {π−1(p)}p∈X .
我们再指出每个局部平凡性 ϕi : π

−1(Ui) → Ui×kr也诱导 Ui上秩为 r的向量丛 π|π−1(Ui) : π
−1(Ui) → Ui.
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如果 π1 : E1 → X 和 π2 : E2 → X 都是 X 上的向量丛,称使得下图交换且满足 f : π−1
1 (p) → π−1

2 (p)是

k-线性映射 (这里线性空间结构来自 [注记2.98])的代数簇态射 f : E1 → E2为丛态射:

E1 E2

X

π1

f

π2

于是我们得到代数簇 X 上所有向量丛和向量丛间的丛态射构成的范畴 Vec(X),称为 X 上的向量丛范畴. 特别
地,我们能够谈论 X 上向量丛的同构. 如果 f : (E1, π1) → (E2, π2)是丛同构,那么定义表明 f 给出 π−1

1 (p)映

至 π−1
2 (p)的线性同构,进而 E1和 E2有相同的秩.
对任何自然数 r,标准投射 pX,r : X × k

r → X 明显定义了 X 上秩为 r的向量丛 (取 Λ是单点集, U = X

以及 ϕ 是恒等映射). 如果 X 上向量丛 π : E → X 和 pX,r : X × k
r → X 作为向量丛同构, 那么称 π

是秩为 r 的平凡丛 (前面的讨论表明这里的秩定义合理). 于是向量丛 π : E → X 定义中每个局部平凡性

ϕi : π
−1(Ui) → Ui × k

r 是向量丛 π : π−1(Ui) → Ui到平凡丛 Ui × k
r → Ui的丛同构.

若 π : E → X 是代数簇 X 上秩是 r的向量丛,我们已经在 [注记2.98]指出每个 p ∈ X ,纤维 π−1(p)上有

定义合理的 k-线性空间结构使得每个局部平凡性 ϕi : π
−1(Ui)

∼=→ Ui × k
r 诱导线性同构 π−1(p) ∼= {p} × k

r. 故

E =
⋃
p∈X

π−1(p)

是一族 r 维 k-线性空间的无交并. 此外, 任何 X 的开子集 U , 可考虑该向量丛在 U 上的所有截面构成的集合

F (U), 借助每个 π−1(p)上的线性空间结构和局部平凡性 (Ui, ϕi)可验证 F (U)上有定义合理的 OX(U)-模结
构满足 (s1 + s2)(p) = s1(p) + s2(p)以及 (f · s)(p) = f(p)s(p)对 p ∈ U, f ∈ OX(U)成立. 于是我们得到预层
F ,并且利用 [注记2.10]可验证这里定义的F 满足粘接条件,是层. 我们得到

Proposition 2.99 ([CLS11]). 代数簇 (X,OX)上任何向量丛 π : E → X 利用 X 的每个开子集 U 对应到向量

丛在 U 上的截面构成的 OX(U)-模F (U)可定义出 X 上的层,并且是 OX-模, [定义1.122].

Remark 2.100. 设 θ : (E1, π1) → (E2, π2)是X 上向量丛之间的丛态射,分别记F1和F2是这两个向量丛定义

的X上OX-模. 那么 θ诱导OX-模层间的定义合理的态射 θ∗ : F1 → F2满足 (θ∗)U : F1(U) → F2(U), s 7→ θs.
特别地, X 上同构的向量丛定义出的 OX-模也同构.

例如, 平凡丛 pX,r : X × k
r → X 的任何开子集 U 上的截面 s : U → X × k

r 都可以表示为 s : U →
X × k

r, p 7→ (p, š(p)),这里 š : U → k
r 是代数簇态射,进而有 s1, ..., sr ∈ OX(U)使得 š(x) = (s1(x), ..., sr(x)).

所以我们得到 OX-模同构F ∼= O⊕r
X ,其中F 表示平凡丛 pX,r : X × k

r → X 在 [命题2.99]下诱导的模层. 于
是, [注记2.100]和向量丛的局部平凡性的定义表明对任何 X 上秩为 r 的向量丛 π : E → X ,设有局部平凡性
{(Ui, ϕi)}i∈Λ,那么有对每个指标 i ∈ Λ有 OUi

-模层同构F |Ui
∼= Or

Ui
,我们得到

Proposition 2.101 (向量丛的局部自由性, [CLS11]). 设 π : E → X 是代数簇 X 上秩为 r的向量丛. 那么该向
量丛在 [命题2.99]下诱导的 OX-模是秩为 r的局部自由 OX-模层.

2.7 Zariski切空间与光滑性

本节固定代数闭域 k,我们介绍 k上仿射簇在一点处的切空间的概念. 首先我们先介绍仿射簇的情形.
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研究几何对象在一点处的切空间的思想源于 “线性逼近”. 具体地, 若仿射簇 X ⊆ k
n 对应的 k[x1, ..., xn]

的理想 I(X) 由 f1, ..., fm ∈ k[x1, ..., xn] 生成, 则 X = V(f1, ..., fm). 固定 X 内一点 p = (p1, ..., pn), 那么
fi(p) = 0, i = 1, 2, ...,m. 为考虑 X 在 p处的 “线性逼近”,先观察每个 fi在 p处的 Taylor展开

fi(x1, ..., xn) =
n∑
j=1

aij(xj − pj) + g(x1, ..., xn),

这里 g是关于 xj − pj , 1 ≤ j ≤ n的其余高次项之和. 那么

aij =
∂fi
∂xj

∣∣
p
=
∂fi
∂xj

(p).

所以每个 fi在 p处有线性多项式
n∑
j=1

(∂fi/∂xj)(p)(xj − pj)逼近. 于是我们能够把

V({
n∑
j=1

(∂fi/∂xj)(p)(xj − pj)|1 ≤ i ≤ m})

视作 X 在 p点处的 “线性近似”. 并且不难看到

V({
n∑
j=1

(∂fi/∂xj)(p)(xj − pj)|1 ≤ i ≤ m}) = V({
n∑
j=1

(∂F/∂xj)(p)(xj − pj))|F ∈ I(X)}). (2.11)

通常我们希望定义出的切空间确实是 (kn中的)线性空间,因此将仿射簇(2.11)平移至经过原点得到

Definition 2.102 (仿射簇的 Zariski切空间, [Hum75]). 设 X ⊆ k
n 是 k上仿射簇,对应理想为 I(X), p ∈ X .

称

TpX = V({
n∑
i=1

(∂F/∂xi)(p)xi|F ∈ I(X)}) ⊆ k
n

是仿射簇 X 在 p处 Zariski切空间.

Remark 2.103. 如果仿射簇 X ⊆ k
n 对应的理想 I(X) ⊆ k[x1, ..., xn]可由 f1, ..., fm 生成,那么 TpX 即 k

n 中

系数矩阵为 Jacobi矩阵 ((∂fi/∂dxj)(p))m×n ∈ k
m×n的线性方程组的解空间,所以有

dimkTpX = n− rank ((∂fi/∂dxj)(p))m×n .

Example 2.104. 设 k是代数闭域, X ⊆ k
n 是不可约多项式 f ∈ k[x1, ..., xn]的零点集,即 f 定义的不可约仿射

超曲面. 任取 p ∈ X ,那么由定义知切空间 TpX 即线性方程

∂f

∂x1
(p)x1 +

∂f

∂x2
(p)x2 + · · ·+ ∂f

∂xn
(p)xn = 0

的解空间. 回忆若仿射簇 X ⊆ k
n 是不可约的且是 1 维的, 则 X 是仿射代数曲线, [例2.52]. 例如考虑仿射

(尖点) 曲线 C = V(x3 − y2) ⊆ k
2, 它在 p = (0, 0) 处的切空间 TpC = k

2(注意局部维数 dimpC = 1, [推
论2.50]). 又例如我们有圆周曲线 S = V(x2 + y2 − 1) ⊆ k

2,它也是仿射曲线 (可直接验证 k[x, y]有素理想升链

0 ⊊ (x2 + y2 − 1) ⊊ (x− 1, y),再由 k.dim k[x, y] = 2可知 S 的坐标环 A(S)的 Krull维数也是 1,所以 S 是 1

维不可约仿射簇),并且在每点 p ∈ S 处的切空间 TpS ∼= k.
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Example 2.105 (仿射簇的乘积簇的切空间). 设 k是代数闭域, X ⊆ k
n, Y ⊆ k

m 都是仿射簇,设 X 可由多项式

f1, ..., fr ∈ k[x1, ..., xn]决定, Y 可由 g1, ..., gs ∈ k[y1, ..., ym]决定,那么乘积簇 X × Y 是 k[x1, ..., xn, y1, ..., ym]

中多项式 f1, ..., fr, g1, ..., gs 决定的零点集. 所以应用 [定义2.102]马上得到对任何 p ∈ X, q ∈ Y 有典范线性同

构 TpX ⊕ TqY ∼= T(p,q)(X × Y ).

光滑流形在一点处的切空间可由该流形光滑函数环在给定点的全体导子给出,下面是仿射簇情形的概念.

Definition 2.106 (仿射簇在给定点处的导子, [Hum75]). 设 k是代数闭域, X ⊆ k
n 是仿射簇, p ∈ X . 称 k-线

性映射 D : O(X) → k是 X 在点 p处的导子,如果 D(fg) = f(p)D(g) + g(p)D(f), ∀f, g ∈ O(X).

Remark 2.107. 上述概念也是交换代数中导子概念的特殊情形, 回忆含幺交换环 K 上交换代数 R 到 R-模 M

的K-导子 D是指满足 D(ab) = D(a)b+ aD(b), ∀a, b ∈ R的K-模同态. 那么所有 R到M 的K-导子构成的集
合 DerK(A,M)是K-模. 对 k上仿射簇X 内固定的点 p,可通过定义 O(X)× k→ k, (f, α) 7→ f(p)α来赋予 k

一个 O(X)-模结构. 进而 D ∈ Derk(O(X),k)当且仅当 D(fg) = g(p)D(f) + f(p)D(g), ∀f, g ∈ O(X).

仿射簇在一点处的切空间类似流形情形也可由在给定点处全体导子给出.

Lemma 2.108. 设 k是代数闭域, X ⊆ k
n 是仿射簇, p ∈ X . 那么 TpX 与 X 在 p点导子全体构成的线性空间

Ωp间有 k-线性同构 φ : TpX → Ωp, a = (a1, ..., an) 7→ Da : O(X) → k,其中

Da : O(X) → k, f 7→
n∑
i=1

(∂f/∂xi)(p)ai

是由多项式函数 f 在每个变量上的偏导数诱导的标准导子.

Proof. 首先可直接计算验证 φ : TpX → Ωp, a = (a1, ..., an) 7→ Da 是定义合理的 k-线性映射. 若 a, b ∈ TpX 满

足 Da = Db, 把这两个导子作用各坐标函数 xi : X → k可得 a = b, 由此得到映射 φ是单射. 对任何 p处的

k-导子 D,命 ai = D(xi)得到点 a = (a1, ..., an) ∈ k
n,直接验证可得该点满足 Da = D,故 φ满.

Remark 2.109. 考虑 [引理2.108]给出仿射簇的乘积簇的 Zariski切空间的内蕴定义,那么 [例2.105]诱导线性
同构

η : TpX ⊕ TqY
∼=→ T(p,q)(X × Y ), (δ, ∂) 7→ η(δ, ∂),

其中 η(δ, ∂) : O(X × Y ) → k满足将任何 X × Y 上正则函数写成
∑

k fkgk,其中 fk ∈ O(X), gk ∈ O(Y ),后

η(δ, ∂)(
∑
k

fkgk) =
∑
k

(δ(fk)gk(q) + fk(p)∂(gk)).

仍设 X 是代数闭域 k上仿射簇并取定 X 内一点 p. 记 mp = {f ∈ O(X)|f(p) = 0}是 p所对应 O(X)的

极大理想,如果 D是仿射簇 X 在点 p处的导子,那么 D(m2
p) = 0. 所以每个导子 D可天然诱导出 mp/m

2
p 上的

k-线性函数. 反之,任给mp/m
2
p上的 k-线性函数 l,通过定义Dl : O(X) → k, f 7→ l(f − f(p))可得到一导子,可

直接计算验证这给出 X 在 p点导子全体与 (mp/m
2
p)

∗间的 k-线性同构,于是我们得到下述命题.

Proposition 2.110 ([Hum75]). 设 k是代数闭域, X ⊆ k
n 是仿射簇, p ∈ X , p点对应 O(X)的极大理想记作

mp. 则作为 k-线性空间有同构 TpX ∼= (mp/m
2
p)

∗. 特别地, mp/m
2
p也是有限维线性空间,满足

dimkTpX = dimkmp/m
2
p.
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记 OX,p 是仿射簇 X 在点 p ∈ X 处的局部环, mp 是点 p 对应的极大理想, 那么总有 k-代数同构 OX,p
∼=

O(X)mp
, [命题1.78]. 若记 p在 O(X)中对应的极大理想是Mp,那么可直接验证 k-线性同构

Mp/M
2
p
∼= (mp)mp

/(m2
p)mp

(一般地,对含幺交换环 K 上的交换代数 R,若有极大理想 m,那么有标准 K-模同构 θ : m/m2 → mm/m
2
m, x +

m2 7→ x/1 +m2
m, θ明显是单射,要看到 θ是满射,对任给 x/s ∈ mm,因为 s /∈ m,故存在 a ∈ R使得 1− sa ∈ m,

于是 x− xsa ∈ m2,这意味着 x/s+m2
m = xa/1 +m2

m,所以 θ是满射). 总之,我们得到

Proposition 2.111. 设 k是代数闭域, X ⊆ k
n 是仿射簇, p ∈ X , OX,p 是 X 在 p点处的局部环. 若记 m是 OX,p

的极大理想,则有 k-线性同构 (m/m2)∗ ∼= TpX . 特别地, dimkm/m2 = dimkTpX . 并注意到 X 在点 p处的局部

环 OX,p满足剩余域 OX,p/m ∼= k(对含幺交换环 R与极大理想 m总有环同构 R/m ∼= Rm/mm).

Remark 2.112. 重复 [命题2.110] 的证明可知代数闭域 k 上仿射簇在 p 处的局部环 OX,p 到 k 的导子全体和

OX,p 唯一的极大理想 m定义出的空间 (m/m)∗ 也有典范的 k-线性同构,所以 TpX 也可以用 OX,p 在 p处所有

到 k的导子模定义. 这时 Derk(OX,p,k) → Derk(O(X),k), δ 7→ (f 7→ δ([(X, f)]))是线性同构.
所以对任何 p ∈ X 处的正则函数芽 [(U, f)] ∈ OX,p(特别地, 也可以考虑 f 是 X 上正则函数), 可以决定

TpX 上线性函数 (df)p : TpX → k, δ 7→ δ([U, f ]). 即 (df)p ∈ T ∗
pX . 在同构 T ∗

pX
∼= m/m2 下 (这里 m是 OX,p 唯

一的极大理想), (df)p 对应至 m/m2 中元素 [(U, f − f(p))] + m2. 注意到前面关于 Zariski切空间的等价定义表
明如果 X 上正则函数 f 和 p ∈ X 的开邻域 U 满足 f(U) = 0,那么所有 ν ∈ TpX 满足 ν(f) = 0.

根据 [命题2.111]和 [注记2.112],在 [定义2.102]考虑的 Zariski切空间可以利用函数层的茎来内蕴定义.

Definition 2.113 (代数簇在给定点的切空间, [Hum75]). 设 (X,OX)是代数闭域 k上的代数簇, p ∈ X . 那么
OX,p 唯一的极大理想是 mp = {[(U, f)] ∈ OX,p | f(p) = 0}, [注记2.2],且有典范同构 OX,p/mp

∼= k, [(U, f)] 7→
f(p). 将 mp/m

2
p作为 k = OX,p/mp-空间的对偶空间 (mp/m

2
p)

∗称为 X 在 p处的 Zariski切空间.

根据 [命题2.111],我们对代数簇定义的切空间概念与仿射簇场景 (在同构意义下)一致. 并且,对代数簇X

在 p处任何开邻域 U ,由典范同构 OU,p
∼= OX,p, [注记2.49],得到

Proposition 2.114. 设 X 是 k 上代数簇且 p ∈ X , 那么对任何 p 的开邻域 U 有 k-线性同构 TpU ∼= TpX . 特
别地,对任何代数簇 X,Y , p ∈ X, q ∈ Y ,设 U 是 p在 X 中的仿射开邻域, V 是 q 在 Y 中的仿射开邻域,那么
U × V 是 (p, q) ∈ X × Y 的仿射开邻域, [注记2.17]. 所以结合 [例2.105]或 [注记2.109],得到 k-线性同构

TpX × TpY ∼= TpU × TqV ∼= T(p,q)(U × V ) ∼= T(p,q)(X × Y ).

Remark 2.115. 根据 [注记2.49],如果 Y 是代数簇 X 的闭子簇且 p ∈ Y ,那么 dimk TpY ≤ dimk TpX .

Remark 2.116. 类似 [命题2.110]的证明方式不难证明,对代数簇 X 中一点 p,若记

Dp = {δ : OX,p → k |对任何[(U, f)], [(V, g)] ∈ OX,p有δ([(U, f)][(V, g)]) = f(p)δ([V, g]) + g(p)δ([U, f ])},

即 Dp 是 OX,p 在 p处的导子全体,那么有线性同构 TpX → Dp, ℓ 7→ ([(U, f)] 7→ ℓ([(U, f − f(p))])),该线性同构
的逆映射是 Dp → TpX, δ 7→ ([(U, f)] +m2

p 7→ δ([(U, f)])).
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根据 [命题2.114], 对代数簇 X 以及 p ∈ X , 我们能够在 X 的一个含 p 的仿射开子集 U 上计算 TpX : 设
(U,φ)是 p所在的一个仿射坐标卡, [注记2.12],那么存在 k

n 中的仿射簇 Y 使得 φ : U → Y ⊆ k
n 是作为代数

簇的同构. 于是,我们得到层的同构 φ∗ : OY → φ∗OX |U . 所以 [命题1.101]蕴含

(φ∗)φ(p) : OY,φ(p) → OX,p, [(W, f)] 7→ [(φ−1(W ), fφ)]

是局部代数的同构. 特别地,这诱导切空间同构 Tφ(p)Y
∼=→ TpX . 而 Tφ(p)Y 可以通过 Y ⊆ k

n为仿射簇且有 φ在

U 上的局部坐标是 x1, ..., xn,借助 [定义2.102]计算. 与光滑流形场景不同的是

代数簇关于不同点的切空间未必具有相同的 k-线性维数.

设X是代数簇且 p ∈ X ,从 [注记2.49]和 [命题1.78]可知OX,p是交换Noether局部环. 故由k ∼= OX,p/mp,
[命题2.48],以及交换 Noether局部环的维数特性立即得到:

Proposition 2.117 ([Hum75]). 设 X 是代数闭域 k上代数簇且 p ∈ X . 那么 OX,p是交换 Noether局部环且

dimpX = k.dimOX,p ≤ dimOX,p/mp
mp/m

2
p = dimk TpX,

其中 mp = {[(U, f)] ∈ OX,p | f(p) = 0}是局部环 OX,p唯一的极大理想.

Lemma 2.118 ([Hum75]). 设 X 是代数闭域 k上代数簇, X = X1 ∪ · · · ∪Xr 是不可约分支分解且 p ∈ X 落在

唯一的不可约分支 Xt 中. 那么标准代数同态 φ : OX,p → OXt,p, [(U, f)] 7→ [(U ∩Xt, f |U∩Xt
)]是同构. 特别地,

代数同构 OX,p
∼= OXt,p诱导切空间的线性同构 TpX ∼= TpXt以及 dimpX = dimpXt.

Proof. 根据 [注记2.49],代数同态 φ : OX,p → OXt,p, [(U, f)] 7→ [(U ∩ Xt, f |U∩Xt
)]是满射,因为 Xt 是 X 的不

可约闭子簇. 如果有 [(U, f)], [(V, g)] ∈ OX,p 满足 φ([(U, f)]) = φ([(V, g)]),那么由 Xt 的非空开子集都稠密以及

[命题2.33(2)]得到 f |U∩V ∩Xt
= g|U∩V ∩Xt

. 命W = X −∪j ̸=tXt,这是X 的含 p开邻域且是Xt的开子集. 所以
f |U∩V ∩W = g|U∩V ∩W . 特别地,得到 [(U, f)] = [(U ∩V ∩W, f |U∩V ∩W )] = [(U ∩V ∩W, g|U∩V ∩W )] = [(V, g)].

根据 [命题2.117],我们看到代数簇 X 中一点 p总满足 dimpX ≤ dimk TpX 且等号成立当且仅当 OX,p 是

正则局部环. 当 p ∈ X 满足 OX,p 是正则局部环时,我们称 p是 X 的光滑点,否则称为奇异点 (简称为奇点). 将
X 的奇异点全体记作 SingX . 前面指出 p ∈ X 是光滑点等价于要求 dimpX = dimk TpX . 当代数簇 X 满足所

有点都光滑时, X 被称为光滑簇, 带有奇点的代数簇被称为奇异簇. 根据 [注记2.51]和 [命题2.114], 如果代数
簇 X,Y 分别有光滑点 p, q,那么 (p, q) ∈ X × Y 是 X × Y 中的光滑点. 特别地,我们得到

Proposition 2.119 ([Hum75]). 设 X,Y 是代数闭域 k上代数簇. 若 X,Y 都光滑,则 X × Y 也光滑.

设X 是代数簇, p ∈ X 且 U 是X 的含 p开子集. 那么有 TpU ∼= TpX , [命题2.114]以及 dimp U = dimpX ,
[命题2.48]. 所以 p是 U 的光滑点当且仅当 p是 X 的光滑点.

Example 2.120 ([Hum75]). 根据 [命题1.78], 代数闭域 k上仿射空间 k
n 在每点处的局部环都是正则局部环,

所以 k
n 是 n 维光滑代数簇. 于是由 Pn 可以被一些标准仿射开子集覆盖且每个仿射开子集同构于仿射空间,

[例1.29],得到 Pn也是 n维光滑代数簇.
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之后我们会看到任何代数群都是光滑代数簇, [命题2.133].
由于交换Artin局部环都是完备的,故域上的有限生成交换代数R满足 {P ∈ SpecR | RP不是正则局部环}

是 SpecR 的开子集, [Mat80, Theorem 74]. 于是, 域上仿射整区 R, 满足极大谱 maxSpecR 有闭子集 {m ∈
maxSpecR | Rm不是正则局部环}. 我们说明这是真闭子集: 若不然,设 {P ∈ SpecR | RP不是正则局部环}是
由 R 的理想 J 定义的闭子集, 则 R 的所有极大理想都包含 J . 这说明 J ⊆ Jac(R) = 0. 于是 {P ∈ SpecR |
RP不是正则局部环}是全集,这和 R关于零理想作局部化正则矛盾. 特别地,有

Proposition 2.121 ([Hum75]). 代数闭域上不可约仿射簇总有光滑点,且光滑点全体构成稠密开子集.

对于不可约分支数目至少为 2的仿射簇X ,设不可约分支分解是X = X1 ∪ · · · ∪Xr,这里 r ≥ 2. 那么每个
Xj−∪k ̸=Xk

Xk定义了Xj 的非空开子集. [命题2.121]说明Xj−∪k ̸=Xk
Xk中有Xj 的光滑点. 结合 [引理2.118]

可知 Xj − ∪k ̸=Xk
Xk 中的 Xj 的光滑点也是 X 的光滑点. 因此每个 Xj 有非空开子集 Uj 是由一些 X 的光滑点

构成. 于是 ∪rj=1Uj 中的点都是 X 中光滑点,并且在 X 中稠密. 特别地,我们导出

Corollary 2.122 ([Hum75]). 代数闭域上非空仿射簇总有光滑点,且光滑点集是稠密子集.

下面我们处理代数闭域上的任何非空代数簇的光滑点集.

Theorem 2.123 ([Hum75]). 设 X 是代数闭域上代数簇,有不可约分支分解 X = X1 ∪ · · · ∪Xr. 将 X 中所有

落在至少两个不同的不可约分支中的点构成的集合记作 T ,这是X 的闭子集. 那么 SingX = (∪rj=1SingXj)∪T
是 X 的真闭子集,且 X 的光滑点集 X − SingX 是 X 的稠密开子集.

Proof. 根据 T 的定义知每个 Xj 满足Wj = Xj − ∪k ̸=jXk = Xj − T 以及 X = W1 ∪ · · · ∪Wr ∪ T . 下面我们证
明 T ⊆ SingX ,一旦证明这一点,则 SingX = ∪rj=1(SingX ∩Wj) ∪ T . 而 [引理2.118]蕴含

T ∪ (SingX ∩Wj) = T ∪ SingXj .

所以有 SingX = (∪rj=1SingXj) ∪ T . 因此,要得到 SingX = (∪rj=1SingXj) ∪ T 只需要再说明 T ⊆ SingX .
如果 X 是仿射簇,那么必定有 T ⊆ SingX : 否则, p ∈ T 满足 OX,p 是正则局部环且 OX,p 的极小素理想至

少两个. 这与 OX,p作为正则局部环是整环,有唯一的极小素理想矛盾.
对一般的代数簇 X ,任取 p ∈ T ,那么有 p的仿射开邻域 U ,于是由仿射情形的讨论, p在 U 中作为某两个

不可约分支的交点是奇异的. 这说明 p是 X 中的奇异点.
至此我们得到公式 SingX = (∪rj=1SingXj) ∪ T . 下面我们说明 SingX 是 X 的闭子集. 不难看到只要说

明 SingXj 是 Xj 的闭子集即可. 于是我们可不妨设 X 不可约. 考察 SingX 和 X 的仿射开覆盖的交,根据 [引
理1.20]和 [命题2.121], SingX 是 X 的闭子集. 最后我们需要说明 X − SingX 是 X 的稠密子集.
根据 [推论2.122]可知,不可约代数簇的光滑点全体都是稠密开子集 (考察非空的仿射开子集的光滑点集).

所以 X 的每个不可约分支 Xj 满足Wj − SingXj 是 Xj 的稠密开子集,并且Wj − SingXj 中的点都是 X 的光

滑点. 所以我们得到 X − SingX 在 X 中稠密.

如果代数簇 X 中点 p满足 OX,p 是整闭整区,称 p是 X 中的正规点. 例如 X 的光滑点都正规. 如果代数簇
X 所有点都正规,则称 X 是正规簇. 所以光滑代数簇都是正规簇. 由于 1维 Noether局部整区是整闭的 (即是
离散赋值环)当且仅当是正则的,所以任何代数曲线 X , [例2.52],是正规的当且仅当是光滑的.
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设 φ : X → Y 是代数簇间的态射,并设 x ∈ X 以及 y = φ(x) ∈ X . 那么 φ∗ 给出 OY 到 φ∗OX 的层态射:
对每个 Y 的开子集 V 有 (φ∗)V : OY (V ) → OX(φ

−1(V )), f 7→ fφ. 这诱导茎层面的代数同态

(φ∗)y : OY,y → OX,x, [(V, f)] 7→ [(φ−1(V ), fφ)],

若记 my 和 mx 分别是 OY,y 和 OX,x 唯一的极大理想,那么代数同态 (φ∗)y 是局部同态: (φ∗)y(my) ⊆ mx. 于是
φ∗诱导线性映射 my/m

2
y → mx/m

2
x. 进而我们也得到线性映射

(dφ)x : TxX → TyY, v 7→ (my/m
2
y → k : w̌ 7→ vφ∗(w̌)). (2.12)

称映射(2.12)是 φ在 x ∈ X 处的微分. 如果还有代数簇态射 ψ : Y → Z 满足 ψ(y) = z,明显有

(dψφ)x = (dψ)y(dφ)x : TxX → TzZ. (2.13)

如果 X ⊆ k
n 与 Y ⊆ k

m 均为仿射簇 (对 x ∈ X, y ∈ Y ,设 mx 和 my 分别是 OX,x 和 OY,y 唯一的极大理

想),并设正则映射 φ : X → Y 有坐标表示 φ(x) = (F1(x), ..., Fm(x)), ∀x ∈ X . 记 ŤxX 是利用 [定义2.102]定
义的切空间,取定 x ∈ X 以及 y = φ(x) ∈ Y ,那么 ŤxX ⊆ k

n 以及 ŤyY ⊆ k
m. 我们将 [引理2.108]下切空间的

(正则函数环上)导子定义给出的切空间记作 Ωx(X). 根据 [引理2.108],我们有典范线性同构

ΦX,x : ŤxX → Ωx(X), a = (a1, ..., an) 7→ (f 7→
n∑
k=1

∂f

∂xk
(x)ak). (2.14)

那么 φ : X → Y 诱导线性映射 Ωx(φ) : Ωx(X) → Ωy(Y ), δ 7→ (f 7→ δ(fφ)). 考虑 φ的 Jacobi矩阵

Jφ =


∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xn...
...

...
∂Fm

∂x1

∂Fm

∂x2
· · · ∂Fm

∂xn

 ,

它是系数来自 k[x1, ..., xn]的m × n阶矩阵. 对上述固定的 x ∈ X ,命 Ťx(φ) : ŤxX → ŤyY 是上述 Jacobi矩阵
在 x点取值诱导的左乘变换,我们来说明 Ťx(φ)是定义合理的映射: 即需验证如果 (a1, ..., an) ∈ k

n满足

∂f

∂x1
(x)a1 +

∂f

∂x2
(x)a2 + · · ·+ ∂f

∂xn
(x)an = 0, ∀f ∈ I(X),

则 (a1, ..., an)对应的列向量经 Jφ(p)左乘后得到的向量

(b1, ..., bm) =

(
n∑
j=1

∂F1

∂xj
(p)aj ,

n∑
j=1

∂F2

∂xj
(p)aj , ...,

n∑
j=1

∂Fm
∂xj

(p)aj

)
∈ k

m

满足
∂h

∂y1
(φ(x))b1 +

∂h

∂y2
(φ(x))b2 + · · ·+ ∂h

∂ym
(φ(x))bm = 0, ∀h ∈ I(Y ).

注意到对任何 h ∈ I(Y )有 h(F1, ..., Fm) ∈ I(X), 因此由多项式映射复合求导公式便知 Ťx(φ)定义合理.
通过直接计算验证可知前面的典范线性同构(2.14)满足交换图:

ŤxX Ωx(X)

ŤyY Ωy(Y )

ΦX,x

Ťx(φ) Ωx(φ)

ΦY,y

(2.15)
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现在考虑 [命题2.110]和 [注记2.112]中的典范线性同构

ΨX,x : TxX → Ωx(X), ℓ 7→ (f 7→ ℓ([(X, f − f(x))] +m2
x)). (2.16)

我们同样可直接验证有交换图:
TxX Ωx(X)

TyY Ωy(Y )

ΨX,x

(dφ)x Ωx(φ)

ΨY,y

(2.17)

结合交换图(2.15),我们得到交换图:

ŤxX Ωx(X) TxX

ŤyY Ωy(Y ) TyY

ΦX,x

Ťx(φ) Ωx(φ) (dφ)x

ΨX,x

ΦY,y ΨY,y

(2.18)

交换图(2.18)表明处理仿射代数簇间的态射在给定点处的微分时,我们能够自由切换导子版本的切空间定义或
嵌入仿射空间坐标形式版本的定义. 例如, 如果 X 是仿射簇 Y 的闭子簇, 那么由图(2.18)立即得到标准嵌入
ι : X → Y 在任何 x ∈ X 处的微分 (dι)x : TxX → TxY 是单射. 那么我们可以利用 [命题2.114]将该观察推广
至一般的代数簇: 设 X 是代数簇 Y 的闭子簇且 x ∈ X . 取定 x在 Y 中的仿射开邻域 U ,那么 X ∩ U 到 Y 的标

准嵌入 j : X ∩ U → X 给出线性同构 (dj)x : Tx(X ∩ U) → TxX 以及 U 到 Y 的标准嵌入 ℓ : U → Y 给出线性

同构 (dℓ)x : TxU → TxY . 如果再记 ι : X → Y, t : X ∩ U → U 是标准嵌入,那么有交换图 (来自式(2.13)):

TxX TxY

Tx(X ∩ U) TxU

(dι)x

(dt)x

(dj)x (dℓ)x (2.19)

根据 [命题2.114],图(2.19)竖直方向的映射都是线性同构. 而仿射情形结论成立说明图(2.19)下行是单射,所以
微分 (dι)x : TxX → TxY 是单射.

Remark 2.124. 对 k上代数簇 X 以及 x ∈ X , 称 (X,x)为带基点代数簇. 如果带基点代数簇 (X,x), (Y, y)之

间的态射 φ : X → Y 满足 φ(x) = y,则称 φ是保持基点的. 易见带基点代数簇之间的保持基点的态射总存在,
例如考虑常值映射. 于是代数闭域 k上所有带基点代数簇与保基点的正则映射可构成一范畴,称为域 k上带基

点仿射簇范畴. 式(2.13)表明通过把带基点代数簇 (X,x)对应到切空间 TxX ,把保基点态射 φ : (X,x) → (Y, y)

对应到线性映射 (dφ)x : TxX → TyY 可定义出 k上带基点代数簇范畴到 k-线性空间范畴的函子.

Remark 2.125. 利用 [引理2.108] 或图(2.18)的交换性, 在仿射簇场景可以采用正则函数环在给定点处导子模
来定义 Zariski 切空间, 这时仿射簇间正则映射 φ : X → Y 在 p ∈ X 处的微分就是映射 (dφ)p : TpX →
Tφ(p)Y, δ 7→ (g 7→ δ(gφ)). 例如,考虑仿射簇 X 到乘积簇 X ×X 的对角嵌入 ∆ : x 7→ x⊗ x,可直接计算验证微
分 (d∆)x : TxX → T(x,x)(X ×X)满足将每个 δ ∈ TxX 映至

∑
k fk⊗ gk 7→ δ(

∑
k fkgk). 这说明,由 [注记2.109],

(d∆)x(δ) = (δ, δ). 如果 φ : X → Y 是仿射簇之间的正则映射且 φ(X) = y0, 即 φ 是常值函数, 那么易验证
(dφ)x = 0, ∀x ∈ X . 此外,利用 [注记2.109]可验证对任何仿射簇之间的正则映射 φ : X → X ′ 和 ψ : Y → Y ′,
正则映射 (φ,ψ) : X × Y → X ′ × Y ′在 (x, y) ∈ X × Y 的微分是 ((dφ)x, (dψ)y).
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Example 2.126. 考虑正则映射 φ : k2 → k
2, (x, y) 7→ (x, xy),那么 φ是光滑簇间满射且它的 Jacobi矩阵是

Jφ =

(
1 0

y x

)
,

所以交换图(2.18)表明 (dφ)0 : T0k
2 → T0k

2不是满射.

2.8 完备簇

本节考虑的代数簇默认是代数闭域 k 上的. 代数簇 X 被称为完备的, 如果对所有代数簇 Y , 有投射 πY :

X × Y → Y, (x, y) 7→ y是闭映射. 在 [注记2.17]我们指出有代数簇同构 X × Y
∼=→ Y ×X, (x, y) 7→ (y, x). 故

代数簇 X 完备当且仅当对所有代数簇 Y 有 πY : Y ×X → Y, (y, x) 7→ y是闭映射.

例如,如果 X = {x}是单点簇,那么对任何代数簇 Y 有 πY : X × Y → Y, (x, y) 7→ y是代数簇同构, [注记2.17].
于是单点簇都是完备的. 如果 X 是 (非空)完备簇,并设有不可约分支分解 X = X1 ∪ · · · ∪Xr,那么由 Xj 给出

X × Y 的闭子集Xj × Y , [注记2.16],知Xj × Y 的每个闭子集也是X × Y 的闭子集. 所以每个Xj 也是完备簇.
反之,如果非空代数簇 X 的不可约分支分解 X = X1 ∪ · · · ∪Xr 中每个 Xj 都是完备簇,那么由 X × Y 的每个

闭子集也是 Xj × Y 的闭子集立即得到 X 也是完备簇. 我们记录为

Lemma 2.127 ([Hum75]). 非空代数簇 X 是完备的当且仅当 X 的所有不可约分支是完备代数簇.

我们再指出代数簇 X 是完备簇的验证只需处理 Y 是不可约簇的情形:

Lemma 2.128 ([Hum75]). 若代数簇X 满足对所有不可约簇 Y 有投射 πY : X × Y → Y 是闭映射,则X 完备.

Proof. 任取非空代数簇 Y ,设有不可约分支分解 Y = Y1 ∪ · · · ∪ Yt. 那么由条件, πYj
: X × Yj → Yj 都是闭映射.

所以 πY |X×Yj
: X × Yj → Y 也是闭映射. 现在任何 X × Y 的闭子集 F 满足

F = ∪tj=1F ∩ (X × Yj)以及 πY (F ) = ∪tj=1πY |X×Yj
(F ∩ (X × Yj)),

这里每个 F ∩ (X × Yj)是 X × Yj 的闭子集,所以 πY (F )是 Y 的闭子集.

Example 2.129 ([Hum75]). 考虑 k
2 中的仿射簇 V(xy − 1) ⊆ k

2 = k× k,该仿射簇在 x轴或 y轴上的标准投

射都不是 k的闭子集. 因此仿射直线 k不是完备簇.

Proposition 2.130 ([Hum75]). 设 X,Y 都是代数闭域 k上的代数簇.
(1)若 X 是完备簇,那么 X 的闭子簇都完备.
(2)若 X,Y 都是完备簇,那么 X × Y 也是完备簇.
(3)若 φ : X → Y 是代数簇间的态射且 X 是完备簇,那么 φ(X)不仅是 Y 的闭子集还是完备簇.
(4)代数簇 X 的任何完备子簇都是 X 的闭子簇.
(5)若仿射代数簇 X 是完备的,那么 dimX = 0.
(6)连通完备代数簇上的正则函数只有常值函数.
(7)任何完备的拟射影簇都是射影簇.
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Proof. (1)因为 X 任何闭子簇 Z 满足 Z × Y 是 X × Y 的闭子集, [注记2.16],故结论明显成立.
(2)不妨设X,Y 都非空,这时对任何代数簇 Z,X × Y ×Z 到 Z 的标准投射可分解为X × Y ×Z 到 Y ×Z

的标准投射与 Y × Z 到 Z 的标准投射的合成,故结论成立.
(3) 根据 [命题2.33(1)], φ 的图像 Γφ = {(x, φ(x)) | x ∈ X} 是 X × Y 的闭子集. 所以 X 的完备性蕴

含 φ(X)是 Y 的闭子簇. 下面证明 φ(X)是完备簇,即完备簇关于任何代数簇态射的像集完备. 为此可不妨设
Y = φ(X)(将 φ视作代数簇态射 φ : X → φ(X)). 任取代数簇 Z,那么我们有态射合成

X × Z Y × Z Z
(φ,id) πZ

这恰好也是X ×Z 在 Z 上的投射. 于是 Y ×Z 的任何闭子集 F 满足 πZ(F )就是X ×Z 的闭子集 (φ, id)−1(F )

在 Z 上投射的像. 这说明 φ(X)是完备簇.
(4)如果 X 有完备子簇 Z,那么对标准嵌入 ι : Z → X 应用 (3)可知 Z 是闭子簇.
(5)如果 X 是完备的,那么 X 的不可约分支也都是完备的, [引理2.127],所以可不妨设 X 不可约. 于是对

任何 X 上正则函数 f : X → k, f(X)作为 k的不可约闭子簇不是 k就是单点集. 而 (3)说明 f(X)完备. 所以
[例2.129]说明 f 是常值函数. 特别地,仿射代数簇 X 的正则函数环是零维的. 这蕴含 dimX = 0.

(6)这来自 (5)的证明过程: 如果 X 是连通完备代数簇,那么正则函数 f : X → k满足 f(X)是 k的连通

闭子集且完备. 结合 k不是完备代数簇得到 f(X)是单点集.
(7)拟射影簇 Z 总是某个射影簇W 的开子集. 如果 Z 完备,考察 Z 到W 的标准嵌入,应用 (3),得到 Z 是

W 的闭子簇. 所以 Z 也是射影簇.

下面我们说明所有的射影代数簇都是完备簇,特别地,根据 [命题2.130(5)]可知维数至少是 1的仿射代数

簇都不是射影代数簇. 并且 [命题2.130(6)]说明连通射影簇上正则函数只有常值函数.

Theorem 2.131 (射影簇的完备性, [Hum75]). 所有射影簇都是完备代数簇.

Proof. 根据 [命题2.130(1)],只要说明射影空间 Pn是完备的. 根据 [引理2.128],只要证对不可约代数簇 Y 有标

准投射 πY : Pn × Y → Y 是闭映射. 将 Y 表示为有限仿射开覆盖 {Yk}ℓk=1的并,应用 [引理1.20]可知只要能够
证明每个标准投射 πYk

: Pn × Yk → Yk 是闭映射,就有 πY : Pn × Y → Y 是闭映射. 所以

只要证明对任何不可约仿射簇 Y 有标准投射 πY : Pn × Y → Y 是闭映射.

记 R是不可约仿射簇 Y 的坐标代数,那么对 Pn 的第 i个标准仿射开覆盖 Ui, Ui = Ui × Y 是不可约仿射簇且

坐标代数同构于 R上的 n元多项式代数, [命题1.50]. 此外,标准同构 φi : Ui → k
n 表明 Ui 上的正则函数可以

表示为关于 x0/xi, x1/xi, ..., xi−1/xi, xi+1/xi, ..., xn/xi的多项式,所以 Ui的正则函数环可表示为

R[x0/xi, ..., xi−1/xi, xi+1/xi, ..., xn/xi],

并且正则函数集 {x0/xi, ..., xi−1/xi, xi+1/xi, ..., xn/xi}在 R上代数无关,这里使用了齐次坐标.
取定 Pn × Z 的非空闭子集 Z 以及 y ∈ Y − πY (Z). 下证存在 f ∈ O(Y )使得 Y − V(f)是 y的开邻域且 f

在 πY (Z)上的取值为零. 这能够保证 y ∈ Y − V(f) ⊆ Y − πY (Z),进而 πY (Z)是 Y 的闭子簇.
对每个 0 ≤ i ≤ n,记 Zi = Z ∩Ui(那么 Zi ∩Uj = Zj ∩Ui),并记M = I(y) ⊆ O(Y ),这是O(Y )的极大理

想. 如果我们能够构造 f ∈ O(Y )−M 满足 fπY 在 Zi上取值为零对所有 0 ≤ i ≤ n成立,那么 f 便是所需构造

的正则函数. 下面我们将构造满足这些性质的正则函数 f ∈ O(Y ). 考虑多项式代数 S = R[T0, T1, ..., Tn],那么
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对每个 0 ≤ i ≤ n和 g ∈ S,我们能够命 Tk = xk/xi(那么 Ti = 1)得到 Ui 上的正则函数 g(x0/xi, ..., xn/xi). 事
实上这里是赋值映射给出的满代数同态 S → O(Ui), g 7→ g(x0/xi, ..., xn/xi). 对每个自然数m置

Im = {g ∈ S | g是m次齐次多项式且 g(x0/xi, ..., xn/xi)零化 Zi对所有 i成立}.

那么 Im是 S 的 k-子空间且 I =
∑∞

m=0 Im定义了 S 的齐次理想.
固定 0 ≤ i ≤ n. 如果 g ∈ S 满足 g(x0/xi, ..., xn/xi)零化 Zi,我们说明存在充分大的正整数m使得表达式

xmi g(x0/xi, ..., xn/xi)变成关于 x0, ..., xn 的齐次多项式且将 xk 替换记号为 Tk 视作 S 中元素 ǧ后, ǧ ∈ I . 首先
总可选取充分大的正整数m使得表达式 xmi g(x0/xi, ..., xn/xi)的每项都是关于 x0, ..., xn的m次单项式,将 xk

替换为 Tk 后得到 S中多项式 ǧ,易见 ǧ(x0/xi, ..., xn/xi) = g(x0/xi, ..., xn/xi)并且对任何自然数 0 ≤ j ≤ m有

(xmi /x
m
j )g(x0/xi, ..., xn/xi) = ǧ(x0/xj , ..., xn/xj)在 Zi ∩ Uj = Zj ∩ Ui 上取值为零. 而 ǧ(x0/xj , ..., xn/xj)在

Zj − Ui 上取值自然也是零 (因为 m可选取充分大使得 ǧ 每个单项式都含有 Ti 的正整数幂),所以 ǧ ∈ Im. 此
外,因为我们有标准同构 Γi : R[x0/xi, ..., xi−1/xi, xi+1/xi, ..., xn/xi] ∼= R[T0, ..., Tn]Ti

= STi
(将 xk 映至 Tk/Ti),

所以前面的讨论表明,如果 g ∈ S 满足 g(T0/Ti, ..., Tn/Ti) ∈ STi
在 Γ−1

i 下的像作为 Ui 上正则函数零化 Zi,就
有充分大的正整数m使得 Tmi g(T0/Ti, ..., Tn/Ti) ∈ Im ⊆ S. 前面的记号下, ǧ = Tmi g(T0/Ti, ..., Tn/Ti).
现在对每个 0 ≤ i ≤ n, Zi = Z ∩Ui和 Ui × {y}不相交 (否则 y ∈ πY (Z))并且都是 Ui的闭子簇, Ui × {y}

在 O(Ui)中对应的零化理想是M [x0/xi, ..., xi−1/xi, xi+1/xi, ..., xn/xi] = MO(Ui)(考虑点 ([0 : · · · : 0 : 1 : 0 :

· · · : 0], y),这里 1在 i次分量),于是 Zi 在 O(Ui)中对应的零化理想 I(Zi)满足 I(Zi) +MO(Ui) = O(Ui)(否
则, I(Zi) + MO(Ui) 是坐标环 O(Ui) 的真理想含于某个极大理想, 导出 Zi 和 Ui × {y} 有交点). 于是存在
fi ∈ I(Zi)和mij ∈M, gij ∈ O(Ui)使得 1 = fi +

∑
jmijgij . 根据前面一段的讨论,存在充分大的正整数m使

得这些 Γi(fi),Γi(gij)乘上 Tmi 后诱导的 S 中多项式 f̌i, ǧij ∈ Im.
现在我们得到 Tmi = f̌i +

∑
jmij ǧij ∈ Im + MSm. 所以我们能够再扩大 m 使得任何 Sm 中的单项式

都在 Im +MSm 中. 即有 Sm = Im +MSm ⊆ S. 由于 Sm 就是 R 上所有 m 次单项式生成的 R-模, 故 Sm,
进而 Sm/Im, 是有限生成 R-模. 故对 Sm/Im = M(Sm/Im) 应用 Nakayama 引理得到存在 f ∈ R −M 使得

fSm ⊆ Im. 特别地, fTmi ∈ Im 对每个 0 ≤ i ≤ n成立. 于是对任何 q ∈ Zi, πY (q) ∈ Y 是 f 的零点. 这说明
fπY ∈ I(Zi), 0 ≤ i ≤ n. 因此我们利用 Nakayama引理构造的 f ∈ R−M 满足要求.

Proposition 2.132 (刚性引理). 设 X 是不可约完备代数簇, Y 是不可约代数簇且 Z 是代数簇. 如果态射 f :

X × Y → Z 满足存在 y0 ∈ Y 使得 f(X × {y0})是单点集,那么对所有 y ∈ Y , f(X × {y})是单点集.

Proof. 记 z0 = f(X × {y0}). 取定 x0 ∈ X ,则 z0 = f(x0, y0)以及 g : Y → Z, y 7→ f(x0, y)是代数簇态射. 设
πY : X × Y → Y 是标准投射,那么 gπY (x0, y0) = f(x0, y0) = z0. 下面我们验证有下述交换图:

X × Y Z

Y

f

πY g

一旦证明上图的交换性,那么 f(X × {y}) = g(y) = f(x0, y),即结论成立. 设 U 是 z0 在 Z 中的仿射开邻域,那
么 f−1(Z − U)是 X × Y 中闭子集,于是由 X 的完备性得到 V := πY f

−1(Z − U)是 Y 的闭子集.
根据 V 的构造,有 y0 ∈ Y −V 且任何 y ∈ Y −V 满足 f(X×{y}) ⊆ U . 现在X的完备性保证了 f(X×{y})

作为完备簇关于某个态射的像集也完备, [命题2.130(3)],且 f(X ×{y})是 U 的闭子簇. 特别地, f(X ×{y})是
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完备仿射簇. 因为 X 是不可约的,所以 f(X × {y})作为不可约完备仿射簇,只能是单点集, [命题2.130(5)]. 所
以在 X × (Y − V )这个不可约簇 X × Y 的非空开子集上有 gπY = f 成立. 由 [命题2.33(2)]得到 gπY = f 在

整个 X × Y 上成立. 结论得证.

2.9 代数群初步

在 [例2.36] 我们介绍了代数群的定义以及代数群在代数簇上的态射作用的概念. 现在我们继续讨论代数
群的基本术语. 设 G是代数闭域 k上的代数群,那么 G总有光滑点, [定理2.123]. 此外 G上的元素的左乘变换

表明 G任意两点有相同的局部维数,再由(2.13)得到 G任意两点有相同的 Zariski切空间维数,因此由 G光滑

点的存在性立即得到对任何 x ∈ G有 dimk TxG = dimxG,我们得到:

Proposition 2.133 ([Hum75]). 代数闭域 k上的任何代数群都是光滑代数簇.

Remark 2.134. 根据 [定理2.123],代数群不同的不可约分支都不相交. 所以

代数群的不可约分支全体恰好是 (关于 Zariski拓扑的)连通分支全体.

特别地,代数群的连通性与不可约性等价. 事实上代数群包含单位元的连通分支总是正规子群, [命题2.136].

称代数群之间的映射 φ : G → G′ 是代数群同态,如果 φ是代数簇的态射且 φ是群同态. 于是我们得到代
数闭域 k上所有代数群和代数群同态构成的范畴,进而也能够谈论代数群同构.

Proposition 2.135. 设代数群 G作为代数簇是不可约完备簇. 那么 G是交换群,称为 Abel簇.

Proof. 命 φ : G×G→ G, (x, y) 7→ xyx−1y−1,那么对 G的单位元 e有 φ(G× {e}) = e. 现在应用刚性引理, [命
题2.132],得到对任何 y ∈ G有 φ(G× {y}) = φ(e, y) = e. 所以 G是交换群.

特别地,根据 [定理2.131],不可约射影代数群都是 Abel簇. 易见许多矩阵群都是仿射代数群,例如一般线
性群 GLn(k)和特殊线性群 SLn(k). 不可约仿射代数群是 Abel簇当且仅当它是平凡群, [命题2.130(5)]. 仿射
直线 k关于加法构成 1维仿射代数群 (k,+),而乘法群 k

×同样是 1维仿射代数群.
之后我们将看到任何仿射代数群都同构于某个一般线性群的闭子群, [定理2.158],所以仿射代数群也常被

称为线性代数群. 下面先介绍些代数群的基本理论.

Proposition 2.136 (单位元分支, [Hum75]). 设 G是代数群,那么 G的单位元 e落在唯一的不可约分支中,记
作 G◦. 称为 G的单位元分支或单位元连通分支. 此外, G◦是指数有限的 G的正规子群.

Proof. 设 X1, ..., Xm 是 G 的所有包含 e 的不可约分支, 那么 X1 × X2 × · · · × Xm 不可约, [命题2.19]. 进而
X1×X2× · · ·×Xm关于乘法在G中的像集X1 · · ·Xm也是G的不可约子集. 特别地,X1 · · ·Xm作为包含 e的

不可约子集,含于某个Xj ,这里 1 ≤ j ≤ m. 但每个Xk当然是X1 · · ·Xm的子集,这迫使Xk = Xj , ∀1 ≤ k ≤ m,
即有m = 1. 因此 G的单位元 e落在唯一的不可约分支 G◦中.
下面说明 G◦ 是指数有限的 G 的正规子群. 对每个 x ∈ G, xG◦ 是 G 的不可约闭子集 (因为 x 的左乘

变换给出代数簇同构 G◦ ∼= xG◦), 由 G◦ 是不可约分支迫使 xG◦ 是 G 的不可约分支. 特别地, 当 x ∈ G◦ 时,
x−1G◦ = G◦(因为 e ∈ x−1G◦). 由此知 G◦ 是 G的子群. 对任何 y ∈ G,有 yG◦y−1 也是包含 e的不可约分支,
因此 G◦ 是正规子群. 根据前面的讨论可知 G◦ 的左陪集都是 G的不可约分支 (并且可遍历 G所有的不可约分

支),故由不可约分支数目有限迫使 G◦在 G中的指数有限.
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Remark 2.137. 根据证明过程, 代数群 G的不可约分支由 G◦ 的左/右陪集给出. 此外, 代数群 G关于 Zariski
拓扑连通的充要条件是 G = G◦. 这时我们称代数群 G是连通的. 在这个术语下,前面 [命题2.135]介绍的 Abel
簇就是指连通且作为代数簇完备的代数群. 此外,由 [引理2.118]可知代数群 G满足 TeG ∼= TeG

◦.

在 [命题2.136]我们看到代数群 G的单位元连通分支 G◦是不可约闭的正规子群且在 G中指数有限. 事实
上任何 G的指数有限的闭子群都包含 G◦: 如果 H 是代数群 G的指数有限的闭子群,那么 H 在 G中的左陪集

全体,是有限多个闭子集. 进而 H 是 G关于有限多个闭子集之并的补集,所以 H 是 G的开子集. 那么 H ∩ G◦

作为 G◦ 的既开又闭子集,在 H ∩G◦ 在 G◦ 中的左陪集将 G◦ 分解为一些既开又闭子集之并, G◦ 的连通性迫使

H ∩G◦ = G◦. 我们将前面的讨论记录为

Proposition 2.138 ([Hum75]). 设 G是代数群,那么 G的任何指数有限的闭子群都包含 G◦.

下面我们说明代数群任何子群的闭包都是闭子群, [命题2.140],首先我们需要

Lemma 2.139 ([Hum75]). 设 G是代数群,那么 G的任何稠密开子集 U, V 满足 G = UV .

Proof. 由 G的求逆映射是代数簇同构得到 V −1也是 G的稠密开子集. 所以任何 x ∈ G满足 xV −1是 G的稠密

开子集. 特别地, xV −1 ∩ U 6= ∅. 这说明 x ∈ UV ,所以 G = UV .

Proposition 2.140 ([Hum75]). 设 G是代数群,那么 G的任何子群 H 满足闭包 H 也是 G的子群. 如果 G的

子群 H 是可构造的,那么 H 是 G的闭子群.

Proof. 由求逆映射是 G上代数簇自同构得到 H
−1

= H−1 = H . 类似地任何 x ∈ H 满足 xH = H ,所以由任何
y ∈ H 满足 Hy ⊆ HH 可知 Hy ⊆ H . 进而 Hy ⊆ H . 我们得到 H 是 G的子群.
如果子群 H 是可构造的, 那么 [引理2.92] 说明 H 包含 H 的某个稠密开子集 U . 进而 [引理2.139] 说明

H ⊇ UU = H . 由此得到 H = H .

对于代数群,我们当然也有关于代数群同态的基本维数公式.

Proposition 2.141 ([Hum75]). 设 G,G′是代数群且 φ : G→ G′是代数群同态. 那么:
(1)核 Kerφ是 G的闭子群.
(2)像 Imφ是 G′的闭子群.
(3)关于单位元分支有 φ(G◦) = φ(G)◦.
(4)有 dimG = dimKerφ+ dim Imφ.

Proof. (1)因为 φ作为代数簇态射是连续的, Kerφ是 G的闭子集. 因此结论自然成立.
(2)根据 Chevalley定理, [定理2.93], Imφ是 G′的可构造子集,故应用 [命题2.140]即可.
(3)因为 G◦ 连通,所以 φ(G◦)作为包含 φ(G)的单位元的连通子集,自然有 φ(G◦) ⊆ φ(G)◦. 而 φ(G◦)作

为 φ(G)的指数有限的闭子群 (这里 φ(G◦)作为 G′ 的可构造子集, 根据 [命题2.140]自然是 φ(G)的闭子群),
总包含 φ(G)◦, [命题2.138]. 这就得到 φ(G◦) = φ(G)◦.

(4)因为 G◦ 是 G指数有限的闭子群且 G的不可约分支来自 G◦ 的左陪集,所以总有 dimG = dimG◦. 同
理 dim Imφ = dimφ(G)◦ = dimφ(G◦),最后一个等号来自 (3). 对任何 G的与 Kerφ相交的不可约分支 yG◦,
取 yg ∈ Kerφ∩yG◦,其中 g ∈ G◦,那么可直接验证 yg(G◦∩Kerφ) = Kerφ∩yG◦,这说明 dimKerφ = dim(G◦∩
Kerφ). 用 G◦替换 G,用 φ(G◦)替换 G′,我们能够不妨设 G连通且 φ是满射 (那么 G′也连通,即不可约). 根据
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[定理2.87], G′有非空开子集 U 满足 U 中元素 y关于 φ的纤维 φ−1(y)满足 dimφ−1(y) = dimG− dimG′. 但
由 φ是满射易验证 dimφ−1(y) = dimKerφ. 所以 dimG = dimKerφ+ dim Imφ.

Example 2.142 ([Hum75]). 考虑行列式态射 det : GLn(k) → k
×, 这是代数群同态. 根据 [例1.32] 和 [命

题2.43], GLn(k)是维数是 n2 的连通仿射代数群 (乘法群 k
× 自然是 1维连通代数群). 易见行列式态射的核就

是特殊线性群 SLn(k). 根据 [命题2.141], SLn(k)是维数是 n2 − 1的闭子群.

设 G 是代数群, 将代数群同态 ρ : G → GLn(k) 称为 G 的一个 n 维有理表示. 更一般地, 对任何 k 上 n

维空间 V , 通过取定 V 的一个 k-基得到线性同构 V ∼= k
n, 可得到群同构 GL(V ) ∼= GLn(k), 于是我们可应用

[例2.7]将 GL(V )视作代数群,并且该代数群同构关于 V 的不同 k-基选取在同构意义下唯一. 于是我们能够对
任何 n维线性空间 V 谈论有理表示 ρ : G→ GLn(k).

Example 2.143 (有理表示的对偶表示依然有理, [Hum75]). 如果代数闭域 k上代数群在 k上 n维线性空间 V

上有群作用,设 V = ke1 ⊕ · · · ⊕ ken,并要求 V ∼= k
n 视作等同后,该群作用是态射作用,即这给出 G的有理表

示. 这等价于,将 g ∈ G对应到 g 在 V 上作用对应的线性变换在给定基下表示矩阵 (ρij(g))n×n,每个分量是关
于 g的正则函数. 现在, G在 V 上的作用诱导对偶表示 ρ∗ : G→ GL(V ∗), g 7→ (f 7→ (v 7→ f(g−1v))). 我们说明
ρ∗也是有理的. 事实上,可直接验证对每个 1 ≤ i ≤ n有

ρ∗(g)ei =
n∑
j=1

ρij(g
−1)e∗j .

由此我们看到 ρ∗也是有理表示.

Proposition 2.144 (代数群作用的轨道, [Hum75]). 设代数群 G态射地作用在 (非空)代数簇 X 上. 那么 X 的

每个 G-轨道 Y 是X 的局部闭子集,且 Y 是光滑代数簇. 此外, Y 的边界 Y − Y 是一些维数严格小于 dimY 的

G-轨道的并. 特别地, X 的维数最小的 G-轨道 Y 满足 Y = Y ,是 X 的闭子簇. 故闭的 G-轨道总存在.

Proof. 固定 X 关于 G-作用的一个轨道 Y . 那么 G中每个元素 g给出 Y 上代数簇自同构 Y → Y, y 7→ gy. 对任
何 y ∈ Y , Y 作为代数簇态射 G → Y, g 7→ gy 的像集是可构造的, [定理2.93]. 因此由 Y 包含 Y 的某个稠密开

子集, [引理2.92],以及 G在 Y 上作用的传递性,可知 Y 的每个点都在某个 Y 的开子集中. 所以 Y 是 Y 的开子

集. 特别地, Y 是 X 的局部闭子集且 Y − Y 是 Y 的真闭子集. 此外, G在 Y 上群作用的传递性也保证了 Y 任

意两点切空间具有相同线性维数以及任意两点局部维数相同,所以由 Y 总有光滑点, [定理2.123],得到 Y 是光

滑代数簇. 由 Y 在 X 中是 G-稳定的,得到每个 g ∈ G作用 Y 后还是 Y ,于是每个 g ∈ G的作用给出 Y − Y

上的代数簇自同构,这蕴含 Y − Y 也是一些 G-轨道的并. 因此根据 [命题2.40(1)],要完成命题证明只需再说明
dim(Y − Y ) < dimY . 注意到 dimY = dimY , [命题2.43],所以只要验证 dim(Y − Y ) < dimY .

现在 Y 作为 Y 的稠密开子集,与 Y 的每个不可约分支相交, [注记1.4]. 而 Y − Y 的每个不可约分支,作为
某个 Y 的不可约分支的子集,都是真子集. 利用 [命题2.40(2)(4)]知 dim(Y − Y ) < dimY .

Example 2.145. 设 G是代数群,考虑 G在自身上的共轭作用,那么这明显是态射作用. 根据 [命题2.144]我们
得到 G的共轭类都是 G作为代数簇的光滑子簇,并且是局部闭子集.

因为代数群 G的 G-齐性空间自动是一个 G-轨道, [例2.36],所以 [命题2.144]表明

Corollary 2.146 ([TY05]). 固定代数群 G以及 G-齐性空间 X ,则 X 是光滑代数簇.
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如果代数群 G态射地作用在代数簇 X 上,对 X 的子集 Y, Z,可定义

TranG(Y, Z) := {g ∈ G | g · Y ⊆ Z},

也被称为 transporter. 当 G作用于 X 时, X 的子集 Y 在 G中的中心化子是

CG(Y ) := {g ∈ G | g · y = y, ∀y ∈ Y }.

Proposition 2.147 ([Hum75]). 设 k是代数闭域, G是 k上代数群,态射地作用在代数簇X 上. 并设 Y, Z 都是

X 的子集,满足 Z 是 X 的闭子簇. 那么有:
(1)集合 TranG(Y, Z)是 G的闭子簇.
(2)对每个 y ∈ Y ,稳定化子 StabG(y)是 G的闭子群. 特别地, CG(Y ) = ∩y∈Y StabG(y)也是闭子群.
(3)对每个 g ∈ G, {x ∈ X | gx = x}是 X 的闭子集. 故 XG := {x ∈ X | gx = x, ∀g ∈ G}是 X 的闭子集.
(4)如果 G是连通的,那么 G保持 X 的每个连通分支. 特别地,当 X 是有限集时, G在 X 上作用平凡.

Proof. 由条件, 对每个 x ∈ X , φx : G → X, g 7→ gx 是代数簇态射. 那么 TranG(Y, Z)就是所有 φ−1
y (Z)关于

y ∈ Y 之交. 因此 TranG(Y, Z)是 G的闭子集,得到 (1). 现在对每个 y ∈ Y , StabG(y) = TranG({y}, {y})由 (1)
是闭子集,因此是 G的闭子群,于是 (2)成立. 下证 (3),对每个 g ∈ G,注意到映射X → X ×X,x 7→ (x, gx)是

代数簇态射,而 X ×X 的对角线集是闭的,所以其原像集 {x ∈ X | gx = x}是 X 的闭子集.
最后证明 (4). 现在对 X 的每个连通分支 L, TranG(L,L) 是 G 的闭子集, 并且明显是 G 的子群. 现在

X 的连通分支数目是有限的 (因为不可约分支分解有限, 且每个不可约分支作为连通子集含于唯一的某个连
通分支), 所以 G 在 X 的连通分支构成的集合上的作用每个轨道的有限的, 特别地, 每个连通分支 L 满足

TranG(L,L)是 G的指数有限的闭子群. 应用 [命题2.138]得到 TranG(L,L) ⊇ G◦ = G.

Remark 2.148. 设 G是代数群且 X 是 G-代数簇, Y 是一个 G-轨道. 那么我们看到任何 y ∈ Y 给出 G到 Y 有

满代数簇态射 φ : G → Y, g 7→ gy. 所以当 G是连通代数群时,由 [注记2.134], X 的子簇 Y 也不可约. 一般地,
任取轨道 Y 中任意一点 y, [命题2.147]表明 StabG(y)是 G的闭子群,我们也总有

dimGy = dimY = dimG− dimStabG(y). (2.20)

要看到(2.20),只需注意到 φ : G→ Y 作为满代数簇态射,关于所有 z ∈ Y 的纤维就是 StabG(y)的左陪集,具有
相同维数 (= dimStabG(y)),所以 [推论2.89(2)]表明 dimG = dimStabG(y) + dimY .

Remark 2.149. 如果 G是连通代数群且 X 是 G-代数簇,那么 G保持 X 的每个不可约分支: 这时对 X 的每个

不可约分支 Y 有 H = TranG(Y, Y )是 Y 的闭子群, [命题2.147(2)],所以考察 G在 X 的不可约分支集合上作

用的轨道可知 [G : H]是有限的. 于是 [命题2.138]说明 H ⊇ G◦ = G. 因此 G = TranG(Y, Y ).

Corollary 2.150 ([Hum75]). 设 k是代数闭域, G是 k上代数群, H 是 G的闭子群. 那么正规化子 NG(H) =

{g ∈ G | gHg−1 = H}和中心化子 CG(H) = {g ∈ G | gh = hg, ∀h ∈ H}都是 G的闭子群.

Proof. 由于 G在 G上的共轭作用是态射作用,所以应用 [命题2.147(2)]可知 CG(H)是 G的闭子群. 只需证明
共轭作用下 TranG(H,H) = {g ∈ G | gHg−1 = H}. 如果 g ∈ G满足 gHg−1 ⊆ H ,那么 gH◦g−1 ⊆ H◦. 因此由
它们都是不可约代数簇以及具有相同维数得到 gH◦g−1 = H◦. 比较维数可知 g决定的共轭作用诱导 H 的连通

分支集上的置换. 特别地, gHg−1 = H . 故 TranG(H,H) = NG(H),现在应用 [命题2.147(1)].
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因此, [命题2.147]和 [推论2.150]表明仿射代数群子集的中心化子以及闭子群的正规化子都是闭子群.

Example 2.151 (代数群的半直积, [Hum75]). 回忆如果群H在群N 上有群作用H×N → N, (h, n) 7→ h ·n,那
么我们能够得到半直积群N⋊H : 作为集合就是N×H ,其上乘法运算来自 (n1, h1)(n2, h2) = (n1(h1 ·n2), h1h2).
作为群, N ⋊ H 的乘法单位元是 (eH , eN ). 现在设 H,N 都是 k上的代数群,并设 H 在 N 上的作用是态射的.
根据 [命题2.30], H ×N 是代数簇. 且根据半直积群的乘法定义, H ⋊N 上的乘法运算是 (H ⋊N) × (H ⋊N)

到 H ⋊N 是代数簇态射. 注意到求逆映射 ι : H ⋊N → H ⋊N, (n, h) 7→ (h−1 · n−1, h−1)也是代数簇态射,我
们得到代数群的半直积群 N ⋊H 也是代数群.

Proposition 2.152 (齐性空间的不可约分支, [TY05]). 设 G是代数闭域上的代数群, X 是 G-齐性空间. 那么代
数簇 X 的每个 G◦-轨道都是 X 的既开又闭子集, X 的所有 G◦-轨道具有相同维数并且给出 X 的所有不可约分

支. 特别地, X 是等维代数簇.

Proof. 固定 x ∈ X ,那么X = Gx. 由于G关于G◦的右陪集全体给出了G的不可约分支全体, [注记2.137],我们
得到存在 h1, ..., hn ∈ G使得X = G◦h1x∪G◦h2x∪· · ·∪G◦hnx是无交并 (因为这是一些G◦-轨道的并,X当然是
G◦-代数簇;并且该分解已经遍历 X 的所有 G◦-轨道). 命 Xi = G◦hix,可不妨设 dimX1 ≤ dimXi, 2 ≤ i ≤ n.
我们用反证法说明 X1 是闭子集. 若不然,则 Y = X1 −X1 非空. 进而由 X1 是 X 的局部闭子集, [命题2.144],
得到 Y 是不可约闭子簇 X1 的真闭子集. 进而 dimY < dimX1 = dimX1, [命题2.40(2)]和 [命题2.43]. 但 Y

是一些 G◦-轨道的并, [命题2.144],所以有某个 2 ≤ j ≤ n满足 dimXj < dimX1,得到矛盾. 因此 X1 是 X 的

闭子集. 并且 X1 作为不可约代数簇 G◦ 的像集依然不可约. 因此 X1 是 X 的不可约闭子集. 对每个 1 ≤ i ≤ n,
由 G◦ 是 G的正规子群, [命题2.136],得到 Xi = G◦hix = hiG

◦x = (hih
−1
1 )X1. 这说明每个 Xi 和 X1 有相同维

数且都是 X 的不可约闭子簇. 由于 X1, ..., Xn 是两两不相交的 X 的不可约闭子簇,所以这给出 X 所有的不可

约分支,且维数相同. 每个 Xi是 X 的开子集来自它作为 G◦-轨道是局部闭子集, [命题2.144].

下面的观察,特别地,蕴含 G-代数簇最低维数的轨道之并是闭子簇.

Corollary 2.153 ([TY05]). 设 G是代数闭域上的代数群且 X 是 G-代数簇. 那么对任何 n ∈ N, X 有闭子集

{x ∈ X | dimGx ≤ n}.

Proof. 对每个 x ∈ X ,因为 Gx是 G-齐性空间,所以应用 [命题2.152]可知 Gx是等维簇且 G◦x是 Gx的一个不

可约分支,进而 dimGx = dimG◦x. 所以我们用 G◦代替 G可不妨设 G是连通代数群. 根据 [注记2.149],可不
妨设 X 是不可约的: 因为连通代数群 G保持 X 的不可约分支 (那么每个不可约分支是一些轨道的并),因此结
论一旦对不可约情形证明,由 X 是有限多个不可约分支的并便知. 下设 G连通且 X 不可约.

根据 [命题2.30], G×X 和 X ×X 都是不可约代数簇,我们有不可约代数簇之间的态射

φ : G×X → X ×X, (g, x) 7→ (x, gx).

那么对每个 (g, x) ∈ G×X ,我们有φ−1(φ(g, x)) = (gStabG(x), x),这里 StabG(x)是G的闭子群, [命题2.147(2)].
因为 g 在 G上的左乘变换给出 G上的代数簇自同构,所以 g(StabG(x))◦ 是 gStabG(x)唯一的含 g 的不可

约分支,满足 dim g(StabG(x))◦ = dimStabG(x) = dimG− dimGx,回忆式(2.20). 根据前面的讨论,我们看到
φ−1(φ(g, x)) = gStabG(x)×{x}且含 (g, x)的不可约分支是唯一的,即 g(StabG(x))◦,因此可应用 [定理2.90]得
到对任何自然数 ℓ,有 {x ∈ X | dim g(StabG(x))◦ ≥ ℓ} = {x ∈ X | dimG− dimGx ≥ ℓ}. 由此得到结论.

83



如果G ⊆ k
n是仿射代数群,那么G的坐标代数O(G)上有自然的k-Hopf代数结构:乘法映射 µ : G×G→

G诱导代数同态 ∆O(G) : O(G) → O(G)⊗O(G)是下述映射序列的合成:

O(G) O(G×G) O(G)⊗O(G),
µ∗ ∼=

这里第二个同构来自 [命题1.50]. 记 G 的单位元 e 到 G 的标准嵌入是 j : {e} → G, 那么这诱导代数同态
εO(G) : O(G) → k,作为下述映射序列的合成:

O(G) O({e}) ∼= k.
j∗

于是可直接验证交换半素代数 O(G)关于 εO(G) 和 εO(G) 成为双代数. 而求逆映射 ι : G → G, x 7→ x−1 诱导的

代数同态 S = ι∗ : O(G) → O(G)给出对极映射. 所以 O(G)上有自然的 Hopf代数结构.
如果将仿射代数群 G的坐标环 O(G)中元素 f ∈ O(G)在余乘法下的像用 Sweedler记号表示:

∆O(G)(f) =
∑
(f)

f(1) ⊗ f(2),

那么等号右边满足
∑

(f) f(1)(x)f(2)(y) = f(µ(x, y)) = f(xy), ∀x, y ∈ G. 且如果 f1, ..., fm, g1, ..., gm ∈ O(G)满

足
∑

k fk(x)gk(y) = f(µ(x, y)) = f(xy)对所有 x, y ∈ G成立,那么 ∆O(G)(f) =
∑

k fk ⊗ gk.
固定代数闭域 k上交换仿射半素 Hopf代数 C = (C,m, u,∆, ε),这里 ∆ : C → C ⊗ C 和 ε : C → k分别

是余乘法和余单位. 则存在 k上仿射簇 G ⊆ k
n 使得 C ∼= O(G) = k[x1, ..., xn]/I(G),设 θ : C → O(G)是代数

同构. 下面将赋予 G上代数群结构使得 O(G)视作仿射代数群 G诱导的 Hopf代数后, θ成为 Hopf代数同构.
因为 θ是代数同构,所以存在唯一的代数同态 ∆O(G) : O(G) → O(G)⊗O(G)使得下图交换:

C C ⊗ C

O(G) O(G)⊗O(G)

∆C

θ θ⊗θ
∆O(G)

由此立即得到 O(G)关于 ∆O(G) 具有余结合律. 于是存在唯一的代数簇态射 µ : G×G → G使得 µ∗ 和标准同

构 O(G×G) → O(G)⊗O(G)的合成是 ∆O(G). 我们也有唯一的代数同态 εO(G) : O(G) → k使得下图交换:

C O(G)

k

θ

εC εO(G)

于是,若记极大理想 KerεO(G)对应的 G中点是 e,那么 εO(G) : O(G) → k, f 7→ f(e).
至此,我们利用 θ赋予了 O(G)上Hopf代数结构使得 θ成为Hopf代数同构,并且我们得到了代数簇态射

µ : G×G→ G和 e ∈ G. 此外,也有唯一的代数簇态射 ι : G→ G使得 ι∗给出 O(G)作为 Hopf代数的对极映
射. 因为 (O(G),∆O(G), εO(G))是 Hopf代数,所以我们有下述交换图:

O(G)

k⊗O(G) O(G)⊗O(G) O(G)⊗ k

O(G×G)

∼= ∼=
∆O(G)

∼=

εO(X)⊗id id⊗εO(X)
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于是对任何 f ∈ O(G)我们有 f(µ(x, e)) = f(µ(e, x)) = f(x)对所有 x ∈ G成立. 这迫使 µ(x, e) = µ(e, x) = x.
类似地,利用∆O(G)满足余结合律可验证 G中元素关于 µ满足结合律,由此得到 (G,µ)是以 e为单位元的幺半

群. 此外,利用 ι∗是 Hopf代数 O(G)的对极映射可验证 µ(ι(x), x) = µ(x, ι(x)) = e对所有 x ∈ G成立. 所以

仿射簇 G关于 µ成为以 e为单位元的代数群,且诱导的 O(G)上的Hopf代数结构使得 θ成为Hopf代数同构.

结合 k上仿射簇范畴与 k上交换仿射半素代数范畴间的标准范畴对偶,我们得到

Theorem 2.154 ([Hum75]). 设 k是代数闭域. 对应 G → O(G) = OG(G)定义的 k上仿射代数群范畴到 k上

交换仿射半素 Hopf代数范畴的函子给出范畴对偶.

故交换半素仿射 k-Hopf代数是某个仿射代数群的坐标环,并注意到当G是交换的仿射代数群时,O(G)是

余交换且交换的 Hopf代数. 这也启发人们将非交换且非余交换的 Hopf代数理解为 “量子群”[Dri87].

Remark 2.155. 特别地, 如果 (C,∆, ε) 是代数闭域 k 上的交换仿射半素 Hopf 代数, 我们有仿射代数群 G 和

Hopf代数同构 θ : C → O(G). 那么 θ诱导拓扑同胚 maxSpecC
∼=→ maxSpecO(G),结合 [例2.38]得到 θ诱导

代数簇同构 maxSpecC ∼= G. 并且可直接验证 C 上特征 (即到 k的代数同态)的卷积诱导的 maxSpecC 上群
结构对应 G上的代数群乘法,且 C 的余单位的核对应到 G的单位元, C 上对极给出maxSpecC 上的求逆映射,
并且 O(G)上对极映射诱导的maxSpecO(G)上的求逆映射. 于是我们得到maxSpecC 关于卷积运算诱导的群
结构成为代数群,且该代数群与 G作为代数群同构.

如果仿射代数群G态射地作用在仿射簇X上,那么群作用诱导G在坐标环O(X)上的左作用: 每个 g ∈ G

和 φ ∈ O(X),有 (gφ)(x) = φ(g−1x), ∀x ∈ X . 也可以考虑右平移作用 (gφ)(x) = φ(xg), ∀g ∈ G, x ∈ X .

Proposition 2.156 (有理表示的推广, [Hum75]). 设 k是代数闭域,G是 k上仿射代数群,态射地作用在仿射簇
X 上, 并取定坐标代数 O(X)的有限维子空间 F . 那么存在 O(X)的有限维子空间 E 包含 F 且 E 关于 G在

O(X)上的左作用封闭. O(X)的有限维子空间 F 关于 G的左作用封闭当且仅当群作用映射 φ : G ×X → X

诱导的代数同态 φ∗ : O(X) → O(G)⊗O(X)满足 φ∗(F ) ⊆ O(G)⊗ F .

Proof. 要证明满足条件的 E 的存在性,只需处理 F 是由单个元素 f ∈ O(X)生成的子空间的情形. 设 φ∗(f) =∑
i θi ⊗ fi ∈ O(G) ⊗ O(X), 那么对任何 g ∈ G 和 x ∈ X 有

∑
i θi(g)fi(x) = f(gx). 特别地, (g · f)(x) =

f(g−1x) =
∑

i θi(g
−1)fi(x), 于是取 E 是这些 fi 生成的子空间即可. 至此得到了第一个结论. 现在设 F 满足

φ∗(F ) ⊆ O(G)⊗ F ,那前面的讨论已经说明了 F 关于 G的左作用封闭. 反之,如果 F 关于 G的左作用封闭,那
么将 F 的 k-基 {fi}扩充为 O(X)的基 {fi} ∪ {f ′

j}. 对任何 f ∈ F ,可设 φ∗(f) =
∑

i θi ⊗ fi +
∑

j λj ⊗ f ′
j . 所以

对每个 g ∈ G有 g · f =
∑

i θi(g
−1)fi +

∑
j λj(g

−1)gj ,这迫使每个 λj = 0.

Remark 2.157. 特别地,如果每个 x ∈ G在 G上的右平移作用 (即右乘变换诱导的群作用)给出的坐标代数上
的代数自同构记作 ρx : O(G) → O(G), 那么对右平移作用应用 [命题2.156]可知坐标代数 O(G) 能够写为一

些有限维子空间的并,这些子空间满足被所有 ρx(x ∈ G)作用封闭. 如果仿射代数群 G有闭子群 H 并设 I 是

O(G)的所有零化 H 的正则函数构成的理想 (那么 O(G)/I ∼= O(H)),我们有

H = {x ∈ G | ρx(I) ⊆ I}. (2.21)

如果 x ∈ H , 那么对任何 f ∈ I 有 ρx(f)(y) = f(yx) = 0, ∀y ∈ H . 故 ρx(I) ⊆ I . 反之, 如果 x ∈ G 满足

ρx(I) ⊆ I ,那么由单位元 e ∈ H , ρx(f)(e) = 0, ∀f ∈ I . 这说明 f(x) = 0, ∀f ∈ I . 于是 x ∈ H .
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下面我们说明仿射代数群能够实现为某个一般线性群的闭子群,这得到 “线性代数群”的命名缘由.

Theorem 2.158 ([Hum75]). 设 k是代数闭域, G是 k上仿射代数群. 那么 G同构于 GLn(k)的某个闭子群.

Proof. 设 O(G)作为 k-代数有生成元集 f1, ..., fn,那么 [命题2.156]说明存在 O(G)的有限维子空间 E 使得 E

关于 G的右平移作用封闭, 即任何 f ∈ E 和 g ∈ G有 ρg(f) : G → k, x 7→ f(xg) 也在 E 中. 于是我们可不
妨设 f1, ..., fn 就是 E 的 k-基. 将 G在自身上的右平移作用对应的群作用映射记作 φ : G × G → G,那么 [命
题2.156]保证可设 φ∗(fi) =

∑
jmij ⊗ fj ,其中mij ∈ O(G). 因此对每个 g ∈ G有 ρg(fi) =

∑
jmij(g)fj . 于是

ψ : G → GLn(k), x 7→ (mij(x))n×n 定义了代数群同态. 因为 fi(x) =
∑

jmij(x)fj(e), ∀x ∈ G,所以 {mij}ni,j=1

是 O(G)作为 k-代数的生成元集. 这说明如果 x, y ∈ G满足 ψ(x) = ψ(y),则所有 O(G)中函数在 x和 y 上的

取值相同. 这逼迫 x = y(将 G视作仿射空间中的仿射簇,考察坐标函数),故 ψ是单射.
现在 G′ = ψ(G)是 GLn(k)的闭子群, [命题2.141(2)]. 要证 ψ是仿射簇之间的同构,只要证 ψ∗ : O(G′) →

O(G)是代数同构. 因为 ψ作为 G到 G′的正则映射是支配的,所以 ψ∗是单射. 考察 G′上取矩阵分量的正则函

数可知 ψ∗的像集包含 {mij}ni,j=1,迫使 ψ∗是满射.

下面我们说明仿射代数群的单位元处切空间有自然的 Lie代数结构,见 [定理2.160]. 如果 e是仿射代数群

G的单位元,并将 TeG采取 e处导子全体给出的定义,那么该 Lie代数结构可以使用 Sweedler记号描述(2.28).
设 G是代数闭域 k上的仿射代数群,前面我们已经看到 G在 O(G)上有两个自然的作用,左平移作用和右

平移作用. 对每个 g ∈ G,左平移作用记作 λg : O(G) → O(G),右平移作用记作 ρg : O(G) → O(G). 那么对每
个 f ∈ O(G),有 (λgf)(x) = f(g−1x)以及 (ρgf)(x) = f(xg),其中 x ∈ G. 因为 G是仿射的, DerkO(G)可以视

作仿射簇 G上 “(代数)向量场”全体. 称导子 δ ∈ DerkO(G)是左不变的,如果 δλg = λgδ 对所有 g ∈ G成立.
即 δ(f(g−1x)) = (δf)(g−1x)对所有 f ∈ O(G), x, g ∈ G成立. 易见 G上两个左不变导子/向量场的换位子依然
是左不变的,所以我们得到 DerkO(G)作为 k-Lie代数的 Lie子代数

L (G) := {δ ∈ DerkO(G) | δλg = λgδ, ∀g ∈ G}. (2.22)

现在切空间 TeG 可等同视作 O(G) 到 k 所有 e 处导子构成的 k-空间 (回忆交换图(2.18), 如无特别说明, 我
们常使用该定义考虑仿射代数群在单位元处的切空间). 那么由 TeG 可由坐标对应的偏导数在 e 处的取值函

数来 k-线性张成 (但这里张成的系数由 G的零化理想的有限生成多项式集给出的 Jacobi矩阵控制)可知每个
v ∈ Te(G)(这里设G ⊆ k

n)满足存在 a1, ..., an ∈ k使得 v(f) =
∑

i ∂(f/∂xi)(e)ai对所有 f ∈ O(G)成立. 所以
我们有定义合理的线性映射

ξ : TeG→ L (G), v 7→ (φ 7→ (x 7→ v(λx−1φ))). (2.23)

另一种得到 x 7→ v(λx−1φ)是 G上正则函数的方式是注意到 λx−1φ =
∑

(φ) φ(1)(x)φ(2),再作用 v便知.

Lemma 2.159 ([Hum75]). 设 k是代数闭域, φ : H → G是代数群同态, φ∗ : O(G) → O(H)是相应的坐标代

数同态. 如果 δ ∈ L (G)满足 φ∗δ : O(G) → O(H)是零映射,那么 δ = 0.

Proof. 由条件,任何 h ∈ H 和 f ∈ O(G),有 δ(f)(φ(h)) = 0. 所以 δ(f)在 G的单位元处取值是零. 现在对任何
g ∈ G, δ(f)(g) = (λg−1δ(f))(e) = δ(λ−1

g f)(e) = 0,最后一个等式因为最前面的讨论对任何 G上正则函数成立,
那么也对 λ−1

g f 成立. 这说明 δ(f) = 0, ∀f ∈ O(G).
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现在利用 L (G) 的定义可直接验证(2.23)定义的 ξ 有定义合理的逆映射 ξ−1 : L (G) → TeG, δ 7→ (φ 7→
(δφ)(e)). 故正则函数左不变向量场作用下在 e处的取值定义出同构

L (G) ∼= TeG. (2.24)

于是我们能够用线性同构(2.24)赋予 TeG上唯一的 Lie代数结构使得 ξ和 ξ−1成为 Lie代数同构.
因此,任取 v, w ∈ TeG,我们有 [v, w](f) = (ξ(v)ξ(w)f)(e)−(ξ(w)ξ(v)f)(e), ∀f ∈ O(G). 根据 ξ的定义易见

对任何 v ∈ TeG以及 f ∈ O(G),我们有 (ξ(v)f)(e) = v(f). 下面我们说明任何仿射代数群间的群同态 φ : G →
G′诱导的线性映射 (dφ)e : TeG→ Te′G

′是 Lie代数同态. 任取 v, w ∈ TeG,并记 v′ = (dφ)e(v), w
′ = (dφ)e(w).

对每个 f ′ ∈ O(G′),记 f = φ∗(f ′). 我们计算

[v′, w′](f ′) =(ξ(v′)ξ(w′)f ′)(e′)− (ξ(w′)ξ(v′)f ′)(e′)

=v′(ξ(w′)f ′)− w′(ξ(v′)f ′)

=v(φ∗(ξ(w′)f ′))− w(φ∗(ξ(v′)f ′)).

我们再计算

(dφ)e([v, w])(f
′) =[v, w](f)

=(ξ(v)ξ(w)f)(e)− (ξ(w)ξ(v)f)(e)

=v(ξ(w)f)− w(ξ(v)f).

下面我们说明总有 ξG(v)f = φ∗(ξG−1(v′)f ′)来得到 (dφ)e : TeG→ Te′G
′是 Lie代数同态. 任取 x ∈ G,有

(ξ(v)f)(x) = (λx−1ξf)(e) = (ξ(v)λx−1f)(e) = v(λx−1φ∗(f ′)).

φ∗(ξ(v′)f ′)(x) = ξ(v′)f ′(φ(x)) = ξ((dφ)e(v)f
′)(φ(x)) = ((dφ)ev)(λφ(x)−1f ′) = v(φ∗(λφ(x)−1f ′)).

容易验证 λx−1φ∗(f ′) = φ∗(λφ(x)−1f ′). 于是我们证明了下述定理.

Theorem 2.160 (代数群的 Lie代数, [Hum75]). 设 k是代数闭域,G,G′是 k上仿射代数群,单位元分别是 e, e′.
那么 TeG和 G上左不变向量场全体给出的 Lie代数 L (G)间的典范同构(2.24)使得 TeG成为 k-Lie代数,称
为 G的 Lie代数. 此外,对任何代数群同态 φ : G→ G′,微分 (dφ)e : TeG→ Te′G

′是 k-Lie代数同态.

因为代数群 G是所有点具有相同局部维数的光滑代数簇, [命题2.133],所以我们总有

dimk TeG = dimG. (2.25)

Notation. 有时也将仿射代数群 G的 Lie代数记作 Lie(G).

设 φ : G → G′ 是仿射代数群间的代数群同态,通常也将 (dφ)e : TeG → Te′G
′ 简记为 dφ. 于是我们得到从

k上仿射代数群范畴 k-Aff.Alg.Grp到 k-Lie代数范畴 k-Lie的函子.

Lemma 2.161 (闭子群的 Lie代数, [Hum75]). 设H 是仿射代数群 G的闭子群, I 是 O(G)中所有在H 上取值

为零的正则函数构成的理想. 记 h = TeH 以及 g = TeG,交换图(2.19)表明标准嵌入 ι : H → G诱导线性嵌入

(dι)e : h → g, v 7→ (f 7→ v(f |H)),因此可将 h等同于 g的 Lie子代数, [定理2.160]. 则有

h = {v ∈ g | ξ(v)(I) ⊆ I}.
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Proof. 如果 v ∈ h, 那么对任何 f ∈ I, x ∈ H 有 ξ(v)(f)(x) = v(λx−1f) = 0(因为这时 λx−1f ∈ I , 说明
λx−1f 在 H 上的限制是零函数). 所以 ξ(v)(I) ⊆ I . 反之, 如果 v ∈ g满足 ξ(v)(I) ⊆ I , 那么任何 f ∈ I 满足

ξ(v)(f)(e) = 0,即 v(f) = 0. 这说明有 v′ : O(H) ∼= O(G)/I → k, g+I 7→ v(g)定义合理, v′ ∈ h且 v = (dι)e(v
′).

这证明了 h = {v ∈ g | ξ(v)(I) ⊆ I}.

Example 2.162 (代数群的伴随表示, [Hum75]). 设 k是代数闭域, G是 k上仿射代数群,并设 g = TeG. 固定
x ∈ G, 那么我们有内自同构 Int x : G → G, y 7→ xyx−1, 这诱导微分 Ad x := d(Int x) : TeG → TeG. 易见
Ad (xy) = (Ad x)(Ad y), ∀x, y ∈ G. 由此不难看到 Ad x : TeG → TeG是 Lie代数自同构,有逆映射 Ad x−1.
于是得到 (通常)群同态

Ad : G→ GL(g), x 7→ Ad x.

上述群同态被称为代数群 G的伴随表示. 之前在介绍代数群的有理表示时我们指出 GL(g)可视作代数群,之后
我们将说明伴随表示是代数群同态,见 [例2.164],因此伴随表示是 G的有理表示. 此外, [例2.143]说明 G的伴

随表示的对偶表示,一般被称为余伴随表示,也是代数群 G的有理表示. 下面计算 Adx在 g = TeG上的作用.
记 φ = Int(x) : G → G, y 7→ xyx−1,那么 φ诱导代数自同构 φ∗ : O(G) → O(G). 借助双射 ξ−1 : L (G) →

TeG, δ 7→ (φ 7→ (δφ)(e)),我们能够将伴随作用 Adx : g → g通过下面的交换图等同视作L (G)到自身的双射:

L (G) g

L (G) g

ξ−1

ξ(Adx)ξ−1 Adx
ξ−1

我们下面也把 ξ(Adx)ξ−1 记作 Adx,那么 Adx : L (G) → L (G)成为 Lie代数自同构. 回忆 x ∈ G诱导 O(G)

上右平移作用 ρx : O(G) → O(G), f 7→ (y 7→ f(yx)). 下面我们验证

(Adx)(δ) = ρxδρ
−1
x , ∀δ ∈ L (G). (2.26)

记 (Adx)(δ)为 δ′,那么 δ′ 和 ρxδρ
−1
x 都是 O(G)上的左不变导子. 根据 ξ−1 是双射,要说明(2.26),只要验证对

所有 f ∈ O(G)有 (δ′f)(e) = (ρxδρ
−1
x f)(e)即可. 根据 δ′的定义,对任何 G上正则函数 f 有

(δ′f)(e) = δ(φ∗f)(e),

回忆这里 φ∗由 φ = Intx诱导. 由于 φ∗(ρxf)(y) = ρxf(xyx
−1) = f(xy), ∀y ∈ G,所以

φ∗(ρxf) = (λx−1f), ∀f ∈ O(G). (2.27)

对式 (δ′f)(e) = δ(φ∗f)(e)用 ρxf 代入得到

δ′(ρxf)(e) = δ(φ∗ρxf)(e)
(2.27)
= δ(λx−1f)(e) = λx−1(δf)(e) = (δf)(x) = (ρxδ(f))(e).

于是我们得到 (δ′f)(e) = (ρxδρ
−1
x f)(e)成立,这就证明了(2.26).

下面我们联系(2.24)给出的 TeG上 Lie代数结构以及 O(G)上 Hopf代数结构. 任取 f ∈ O(G),设

∆(f) =
∑
(f)

f(1) ⊗ f(2),
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那么对任何 x ∈ G,有 λx−1f =
∑

(f) f(1)(x)f(2). 于是对任何 v ∈ TeG,我们有

ξ(v)(f) =
∑
(f)

f(1)v(f(2)).

于是结合 (ξ(v)f)(e) = v(f)可直接验证对任何 v, w ∈ TeG,有 ξ(v)ξ(w)(f) =
∑

(f) v(f(1))w(f(2)). 故

[v, w](f) =
∑
(f)

v(f(1))w(f(2))− w(f(1))v(f(2)), ∀v, w ∈ TeG, f ∈ O(G). (2.28)

并注意到前面的讨论说明任何 δ = ξ(v), δ′ = ξ(w) ∈ L (G),满足

[δ, δ′](f) =
∑
(f)

(v(f(1))w(f(2))− w(f(1))v(f(2))). (2.29)

以及对任何正整数 k,我们有
δk(f) =

∑
(f)

(v(f(1))v(f(2)) · · · v(f(k))). (2.30)

下面我们希望计算代数闭域上一般线性群作为仿射代数群的切空间.

Example 2.163 (一般线性群的切空间, [Hum75]). 设 k是代数闭域, n是正整数. 那么 GLn(k)作为 n2 维连通

仿射代数群是 n2维不可约光滑仿射簇. 所以任何X ∈ GLn(k),有 dimk TXGLn(k) = n2. 将 TIn(GLn(k))采用
O(GLn(k))到 k在 In 处导子全体的定义. 那么有标准线性映射 ζ : TIn(GLn(k)) → Mn(k), ν 7→ (ν(xij))n×n,
这明显是单射,所以

线性映射 ζ : TIn(GLn(k)) → Mn(k), ν 7→ (ν(xij))n×n给出线性同构 TIn(GLn(k)) ∼= Mn(k).

现在我们希望利用公式(2.28)描述在等同 TIn(GLn(k))
∼=→ Mn(k)下, Mn(k)上被诱导的 Lie代数结构.

注意到 Hopf代数 O(GLn(k)) = k[xij | 1 ≤ i, j ≤ n][det−1
n ]的余结构满足 ∆(xij) =

∑n
k=1 xik ⊗ xkj . 故

TIn(GLn(k))上的 Lie代数结构在Mn(k)上的诱导就是换位子运算!
根据交换图(2.19),任何仿射代数群 G通过闭嵌入某个一般线性群 GLn(k)后 (应用 [定理2.158]), Lie代

数也有嵌入关系,所以前面的讨论说明 TeG也能够实现为矩阵 Lie代数Mn(k)的某个 Lie子代数.
现在我们希望计算 SLn(k) ⊆ GLn(k) 在 In 处的切空间, 根据前面的讨论我们可以将 TInSLn(k) 视作

(Mn(k), [−,−])的 Lie子代数. 更具体地,该等同来自每个O(SLn(k))在 In处的导子 ν对应到矩阵 (ν(xij))n×n.
而现在 ν(detn) = ν(1) = 0说明

∑
σ∈Sn

ν(xσ(1)1 · · ·xσ(n)n) = 0. 于是,由 (xij)n×n在 In处的取值满足 xij = δij

迫使 ν(detn) = ν(x11) + · · · + ν(xnn) = 0. 这说明在将 TInSLn(k) 等同于 (Mn(k), [−,−]) 的 Lie 子代数后,
TInSLn(k) ⊆ sln(k) = {(aij)n×n ∈ Mn(k) | a11 + · · · + ann = 0}. 现在由 SLn(k) 是 n2 − 1 维光滑簇可知

dimk TInSLn(k) = n2 − 1,于是 TInSLn(k) = sln(k).

如果仿射代数群 G 有闭子群 H , 那么 H 到 G 的典范嵌入诱导的 Lie 代数同态 TeH → TeG 是单射, 即
TeH 可以视作 TeG 的 Lie 子代数. 原因是这时 O(H) 是 O(G) 的同态像, 于是如果记 O(G) 有理想 I 使得

O(G)/I ∼= O(H),则 TeH ∼= {v ∈ TeG | v(I) = 0}. 并注意到任何 G出发的代数群同态的微分可限制在闭子群

H 的 Lie代数出发的切映射. 下面我们希望利用 [例2.163]计算 GLn(k)的伴随表示,并借助仿射代数群关于一
般线性群的闭嵌入, [定理2.158],得到任何仿射代数群的伴随表示都是代数群同态.
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Example 2.164 (伴随表示的有理性, [Hum75]). 设 k是代数闭域且 n是正整数. 在 [例2.163]我们已经看到如
何将 GLn(k) 在 In 处的 Lie代数等同于 gln(k). 取定 X = (xij)n×n ∈ GLn(k), 我们希望考察 O(GLn(k)) 上
代数自同构 ρX 和 λX 在坐标函数 Tij 上的作用. 设 Y = (yij)n×n ∈ GLn(k), 那么 (ρXTij)(Y ) = Tij(Y X) =∑n

k=1 yikxkj =
∑n

k=1 Tik(Y )xkj = (TX)ij(Y ),其中 T = (Tij)n×n是坐标函数给出的矩阵. 这说明

右平移 ρX 在坐标函数 Tij 上的作用得到的正则函数就是 TX 的 (i, j)元给出的函数.

同样的讨论方式可直接得到对 X = (xij)n×n ∈ GLn(k),也有

左平移 λX 在坐标函数 Tij 上的作用得到的正则函数就是 X−1T 的 (i, j)元给出的函数.

如果 x ∈ gln(k) = TInGLn(k),那么双射 ξ : gln(k) → L (GLn(k)), v 7→ (φ 7→ (x 7→ v(λx−1φ)))将切向量 x变
为左不变导子 ξ(x),下面我们考虑左不变导子 ξ(x)在坐标函数 Tij 上的作用. 回忆前面将 x视作矩阵的方式对
应矩阵 (x(Tij))n×n,下面我们也将该矩阵使用记号 x. 我们计算

ξ(x)(Tij)(Y ) = x(λY −1Tij) = x(
n∑
k=1

yikTkj) =
n∑
k=1

yikxkj =
n∑

k=1
(Tikxkj)(Y) = (Tx)ij(Y).

前面的计算表明左不变导子 ξ(x)在 Tij 上的作用就是 Tx的 (i, j)元给出的正则函数.
回忆在(2.26)我们给出了伴随作用在左不变导子上的作用,所以任何X ∈ GLn(k)决定的伴随作用AdX 在

x ∈ gln(k)上的作用 AdX(x)满足 AdX(x)(Tij) = ρXξ(x)ρ−1
X (Tij)|In(视作左不变导子再考虑在 e = In 的取值

后可视作 O(GLn(k))到 k的导子). 利用前面导出的 ρX 作用得到 ρ−1
X (Tij) = (TX−1)ij . 故可直接计算验证得

到 AdX(x)(Tij) =
∑

m,ℓ,k Timxmℓxℓk(x−1)kj = (TXxX−1)ij ,作为左不变导子在坐标函数上的作用.
因此, AdX(x)视作 O(GLn(k))到 k的导子,在坐标函数 Tij 上的取值就是矩阵 XxX−1的 (i, j)元. 故

将 gln(k)和Mn(k)典范等同后, AdX : Mn(k) → Mn(k), Y 7→ XYX−1.

特别地, 我们得到 GLn(k) 上的伴随作用 Ad 是正则的. 特别地, 不难得到 GLn(k) 的任何闭子群上的伴随作
用, 由前面得到的显式表达, 也是正则的. 现在 [定理2.158] 说明任何仿射代数群 G 可闭嵌入某个一般线性群

GLn(k),所以我们能够把结论过渡到任何仿射代数群 G. 事实上,如果记 G和 GLn(k)的闭子群 G 之间的同构

是 ι,那么 (dι)e : Lie(G) → Lie(G )是线性同构,诱导代数同构 τ : GL(Lie(G )) → GL(Lie(G)), θ 7→ (dι)−1
e θ(dι)e.

这些记号下我们有交换图

G GL(Lie(G ))

G GL(Lie(G))

AdG

τι

AdG

(2.31)

由此得到任何仿射代数群的伴随表示都是有理表示.

下面我们希望计算仿射代数群 G上乘法映射 µ与求逆映射 ι在单位元 e处的微分. 应用 [注记2.109]可直
接验证 G的乘法映射 µ : G × G → G诱导的切映射 (dµ)(e,e) : TeG ⊕ TeG → TeG, (δ, ∂) 7→ δ + ∂ 就是切空间

上加法运算. 更一般地,对任何 x, y ∈ G, (dµ)(x,y) : TxG⊕ TyG→ TxyG将每个 (δ, ∂) ∈: TxG⊕ TyG映至导子

O(G) → k, f 7→
∑
(f)

(δ(f(1))f(2)(y) + f(1)(x)∂(f(2))). (2.32)
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如果记 Lx : G→ G,Ry : G→ G分别是元素 x, y的左乘/右乘变换诱导的正则映射,那么(2.32)可被改写为

(dµ)(x,y) = (dRy)x + (dLx)y. (2.33)

记 δ : G→ G×G是对角映射,现在考虑下面的正则序列的合成定义的映射 τ : G→ G×G:

G G×G G×G G.
∆ (id,ι) µ

对每个 x ∈ G,考察 (dτ)x = 0,利用(2.32)和 [注记2.125]得到

(dι)x = −(dLx−1)e(dRx−1)x. (2.34)

特别地,对式(2.34)命 x = e得到 (dι)e = −id : TeG→ TeG. 我们把前面的讨论记录为

Proposition 2.165 ([Hum75]). 设 G是仿射代数群, µ : G×G→ G和 ι : G→ G分别是乘法映射和求逆映射,
e是 G的单位元. 那么对任何 x, y ∈ TeG,有 (dµ)e(x, y) = x+ y以及 (dι)e(x) = −x.

设 G是仿射代数群并固定 x ∈ G. 那么我们有代数簇态射 ψ : G → G, y 7→ xy−1x−1. 易见 ψ(e) = e, 并
且,若记 x决定的内自同构是 Int x : G → G, y 7→ xyx−1,那么应用 [命题2.165]可知 ψ = (Int x)ι在 e处的微

分满足 (dψ)e = −(Ad x). 下面我们计算代数簇态射 γx : G → G, y 7→ yxy−1x−1(称为元素 x ∈ G决定的换位

子态射)在 e处的微分. 首先 γx 可以表示为 τ : G → G × G, y 7→ (y, ψ(y))与 G上乘法映射的合成. 根据 [注
记2.125], (dτ)e(v) = (v,−(Ad x)v),于是由 [命题2.165]对 (dµ)e的描述可知 (dγx)e(v) = v − (Ad x)v. 故

Proposition 2.166 (换位子态射的微分 [Hum75]). 设G是仿射代数群且 x ∈ G,命 γx : G→ G, y 7→ yxy−1x−1

是 x决定的换位子态射. 则 (dγ)e = id−Ad x.

在 [例2.164] 我们看到仿射代数群 G 的伴随表示 Ad : G → GL(g) 是代数群同态, 其中 g = Lie(G). 因
此一个自然的问题是计算代数群同态 Ad 在单位元 e ∈ G 处的微分. 首先一般线性群 GL(g) 在单位元处的
切空间可等同于 gl(g), 即 g上线性变换关于换位子的 Lie代数: 取定 g的 k-基 {v1, ..., vn}后给出代数群同构
θ : GL(g) ∼= GLn(k), 这里 n = dimG 且 θ 将每个 g 上可逆线性变换对应到该变换在给定基下的表示矩阵

(如果不局限在可逆线性变换, 我们有线性同构 θ̃ : gl(g) → Mn(k), 这也是 Lie 代数同构). 在 [例2.163] 我们
计算了 GLn(k)在单位元处的切空间,通过将 GLn(k)每个在单位阵 In 处的导子 δ 对应到矩阵 (δ(Tij))n×n,其
中 Tij 是 GLn(k) 上的坐标函数, 我们得到 Lie 代数同构 TInGLn(k) ∼= Mn(k). 于是有唯一的 Lie 代数同构
ζ : Tid(GL(g)) → gl(g)使得下图交换 (我们马上说明该同构不依赖于 g的 k-基的选取):

Tid(GL(g)) gl(g)

TInGLn(k) Mn(k)

ζ

(dθ)id θ̃

∼=

(2.35)

现在代数群同构 θ : GL(g) → GLn(k)诱导代数同构

θ∗ : O(GLn(k)) → O(GL(g)).

于是我们得到交换图:
O(GLn(k)) O(GL(g))

(Mn(k))
∗ (End(g))∗

θ∗

θ̃∗

(2.36)
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这里图(2.36)中竖直方向的映射是 k-线性函数空间到坐标函数的标准映射,并且总是嵌入: 如果有限维 k-线性
空间 V 的线性变换环 EndkV 上线性函数 f 满足 f |GL(V ) = 0, 那么 f = 0, 因为 GL(V ) 关于 Zariski 拓扑是
EndkV 的稠密开子集. 下面我们说明在将图(2.36)竖直方向上的映射视作嵌入后,有

λ(ζ(δ)) = δ(λ), ∀λ ∈ (End(g))∗, δ ∈ Tid(GL(g)). (2.37)

注意到式(2.37)的等号右边与 g的 k-基选取无关,所以(2.35)定义出的 Lie代数同构 ζ : Tid(GL(g)) → gl(g)与

g的 k-基 {v1, ..., vn}选取无关! 要看到式(2.37)成立,根据(2.35),对任何 δ ∈ Tid(GL(g))有

θ∗(Tij)(ζ(δ)) = Tij θ̃(ζ(δ)) = δ(Tijθ) = δ(θ∗(Tij)).

再从图(2.36)下面水平反向的线性同构可知 θ∗(Tij)全体线性张成 (End(g))∗,所以(2.37)成立. 前面的讨论表明

交换图(2.35)定义的 Lie代数同构 ζ : Tid(GL(g)) → gl(g)由(2.37)决定.

Notation. 记仿射代数群 G的伴随表示 Ad : G→ GL(g)在单位元 e处的微分为 ad : g → Tid(GL(g)).

由 Lie代数同构 ζ : Tid(GL(g))
∼=→ gl(g),我们可定义每个 v ∈ g对应的 ad(v) ∈ Tid(GL(g))在 g上的作用:

ad(v)(w) := ζ(ad(v))(w). (2.38)

即我们利用 ζ 将 ad(v)视作 gl(g)中的元素. 根据(2.37),由(2.38)定义的作用满足

λ(ad(v)) = ad(v)(λ), ∀λ ∈ (End(g))∗. (2.39)

式(2.39)的等号左边是利用(2.38)将 ad(v) 视作 End(g) 中元素, 右边是 ad(v) 作为 Tid(GL(g)) 中元素可作用
(End(g))∗ ⊆ O(GL(g))中函数. 对每个 f ∈ O(GL(g))和 w ∈ g命 ϑf,w : End(g) → k, φ 7→ φ(w)(f),这明显是
(End(g))∗中元素, φ(w) ∈ g作用在正则函数 f 上. 故对任何 v, w ∈ g与 f ∈ O(GL(g))有

(ad(v)(w))(f) = (ζ(ad(v))(w))(f) = ϑf,w(ζ(ad(v)) = ad(v)(ϑf,w) = v(ϑf,wAd). (2.40)

对 x ∈ G,我们也有 (ϑf,wAd)(x) = ϑf,w(Ad(x)) = (Ad(x)(w))(f) = w(f(Int x)),其中 Int x : G → G是 x决

定的内自同构.下面对 w ∈ g和 f ∈ O(G)引入临时记号

w ∗ f : G→ k, x 7→ w(ρxf) =
∑
(f)

w(f(1))f(2)(x).

那么 w ∗ f ∈ O(G)并且根据 [命题2.165],对任何 v ∈ g有

v((w ∗ f)ι) = −v(w ∗ f). (2.41)

这里 ι : G→ G是求逆映射. 由于 f(Int x)(y) =
∑

(f) f(1)(x)f(2)(y)f(3)(x
−1),所以

w(f(Int x)) =
∑
(f)

f(1)(x)w(f(2))f(3)(x
−1) =

∑
(f)

f(1)(x)((w ∗ f(2))ι)(x).

即作为 G上正则函数, ϑf,wAd =
∑

(f) f(1)((w ∗ f(2))ι). 现在对该式作用导子 v ∈ g,结合(2.40)得到

v(ϑf,wAd) =
∑
(f)

[v(f(1))((w ∗ f(2))ι)(e) + f(1)(e)v((w ∗ f(2))ι)].
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对上式第二项应用(2.41)得到

v(ϑf,wAd) =
∑
(f)

(v(f(1))w(f(2))f(3)(e)− f(1)(e)v(w ∗ f(2)))

=
∑
(f)

v(f(1))w(f(2))− w(f(1))v(f(2)).

根据(2.28),我们得到仿射代数群的伴随表示的微分与 Lie代数的伴随表示的联系:

Theorem 2.167 (伴随表示的微分, [TY05]). 设 G是仿射代数群, g = Lie(G),并设 ad : g → Tid(GL(g))是 G的

伴随表示作为有理表示的微分. 那么在(2.38)的记号下,我们有 (ad(v)(w)) = [v, w], ∀v, w ∈ g.

Corollary 2.168 (闭正规子群的 Lie代数是 Lie理想, [TY05]). 设 G是以 g为 Lie代数的仿射代数群, H 是闭
正规子群且有 Lie代数 g. 那么在将 h视作 g的 Lie子代数后, [引理2.161], h是 g的 Lie理想.

Proof. 设 I 是 H 对应的 O(G)的理想. 任取 x ∈ G和 f ∈ I ,由 H 是正规子群, f(Int x) ∈ I ,其中 Int x是内
自同构. 于是对 v ∈ h有 v(f(Int x)) = 0. 这说明 Ad(x)(h) ⊆ h. 取定 h的 k-基 v1, ..., vp 并延拓为 g的 k-基
v1, ..., vn. 这诱导代数群同构 θ : GL(g) ∼= GLn(k). 于是可设 θ(Ad(x)) = (πij(x))n×n ∈ GLn(k). 因为伴随表示
Ad : G→ GL(g)是有理表示,每个 πij : G→ k是正则函数. 根据交换图(2.35)可直接计算验证对任何 v ∈ g,

θ̃(ζ(ad(v))) = (v(πij))n×n. (2.42)

所以(2.42)蕴含对任何正整数 1 ≤ j ≤ n, 有 ζ(ad(v))vj =
∑n

i=1 v(πij)vi. 前面得到的 Ad(x)(h) ⊆ h 说明当

p+ 1 ≤ i ≤ n, 1 ≤ j ≤ p时, πij(G) = 0. 由此可知 ζ(ad(v))(h) ⊆ h. 现在应用 [定理2.167].

Remark 2.169. 根据 [推论2.150],仿射代数群G的任何闭子群H 的正规化子NG(H)是闭子群且H 是NG(H)

的正规子群,那么 [推论2.168]说明 h = Lie(H)是 NG(H)的 Lie代数的 Lie理想.

Proposition 2.170 ([Hum75]). 设仿射代数群 G有闭子群 A,B (Lie代数分别记作 a和 b),并设 C 是 [A,B] =

〈aba−1b−1 | a ∈ A, b ∈ B〉 ⊆ G在 G中的闭包 (这是闭子群, [命题2.140]),那么 c = Lie(C)包含所有形如

w −Ad(a)(w), v −Ad(b)(v), [v, w]

的元素,这里 a ∈ A, b ∈ B, v ∈ a, w ∈ b. 特别地,如果设 H 是 [G,G]的闭包,那么 h ⊇ [g, g].

Proof. 回忆在 [命题2.166]我们看到对任何 x ∈ G, γx : G → G, y 7→ yxy−1x−1 在单位元 e处的微分 (dγx)e =

id − Ad(x). 所以由 γa(B) ⊆ C 以及 γb(A) ⊆ C 取微分可知 c 包含形如 w − Ad(a)(w), v − Ad(b)(v) 的元
素. 现在任取 v ∈ a, 有映射 φ : B → c, b 7→ v − Ad(b)(v), 这是代数簇态射: 伴随表示是有理表示保证了
B → g : b 7→ Ad(b)(a)是 B 到 g的代数簇态射, φ也可以分解为下述代数簇态射序列的合成:

B B ×B g×GL(g) g× g g
∆ (v,−Ad) (id,v∗) + (2.43)

其中 ∆ : B → B × B 是对角态射. 于是 B → g, b 7→ v − Ad(b)(v)是代数簇态射. 所以 (dφ)e(b) ⊆ T0c. 这里
再指出 (c,+)是 (g,+)的闭子群,因为 c作为 g的有限维线性空间可由所有在 c上取值为零的线性函数 (取定
g的基后,写成坐标形式,这些线性函数是 1次齐次多项式)的公共零点集定义 (如果 v ∈ g − c,可构造 f ∈ g∗
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使得 f(c) = 0 但 f(v) 6= 0), 因此 T0c 可视作 T0g 的线性子空间. 并且根据前面的讨论可知如果 v ∈ g 满足

v 是所有满足 f(c) = 0 的 f ∈ g∗ 的公共零点, 那么 v ∈ c. 将 φ 视作(2.43)给出的态射合成, 由 [定理2.167],
[注记2.125],式(2.39)和 [命题2.165]可计算验证对任何 w ∈ b, (dφ)e(w) ∈ T0g满足对任何 g上的线性函数 f

有 (dφ)e(w)(f) = f(−[w, v]). 由 (dφ)e(w) ∈ T0c, 任何 g 上零化 c 的线性函数 h 都有 (dφ)e(w)(h) = 0, 所以
f([v, w]) = 0对 g上零化 c的线性函数 f 都成立. 所以 [v, w] ∈ c.
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