交错张量与 Kähler 高阶形式

戚天成◎

复旦大学 数学科学学院

2024年2月9日

这份笔记主要记录光滑流形 \mathcal{M} 上所有光滑 k-形式构成的模 $\Omega^k(\mathcal{M})$ 的等价刻画并介绍 $\Omega^k(\mathcal{M})$ 与 $\Omega^1(\mathcal{M})$ 之间的联系—— $\Omega^k(\mathcal{M})\cong \bigwedge_{C^\infty(\mathcal{M})}^k \Omega^1(\mathcal{M})$,主要参考文献是 [Lee12] 和 [Nes03]. 从这个等式可自然地给出 Kähler 高阶形式的定义, 关于 Kähler 微分的基本概念可参见 [Eis04] 或 [Har77]. 全文考虑的流形均为实流形.

1 交错张量

本节固定 n 维光滑流形 \mathcal{M} , 记 \mathcal{M} 上协变 k-张量丛为 $T^kT^*\mathcal{M}$, 其光滑截面模, 即 \mathcal{M} 上所有光滑协变 k-张量场构成的 $C^{\infty}(\mathcal{M})$ -模, 记作 $\mathcal{T}^k(\mathcal{M})$. \mathcal{M} 上所有光滑向量场构成的模记作 $\mathfrak{X}(\mathcal{M})$.

如果 $A \in T^k(\mathcal{M})$, 那么 A 可自然诱导多重 $C^{\infty}(\mathcal{M})$ -线性函数

$$\mathcal{A}: \underbrace{\mathfrak{X}(\mathcal{M}) \times \cdots \times \mathfrak{X}(\mathcal{M})}_{k \text{ in}} \to C^{\infty}(\mathcal{M})$$

$$(X_1, ..., X_k) \mapsto A(X_1, ..., X_k),$$

其中 $A(X_1,...,X_k): \mathcal{M} \to \mathbb{R}, p \mapsto A_p(X_1|_p,...,X_k|_p)$. 如果 A 是光滑的交错 k-张量场, 那么 \mathcal{A} 便是 $\mathfrak{X}(\mathcal{M})$ 上的交错 k-重线性函数. 易见有 $C^{\infty}(\mathcal{M})$ -模同态 $\Theta: \mathcal{T}^k(\mathcal{M}) \to \{\mathcal{A}|\mathcal{A} \in \mathfrak{X}(\mathcal{M}) \perp k - \mathbb{E}C^{\infty}(\mathcal{M}) - \mathfrak{X}(\mathcal{M}) \}$ 满足 $\Theta(A) = A$, 这里 A 如上定义. 并且若把 Θ 限制在交错张量场上, 可将每个交错张量场对应到交错 $C^{\infty}(\mathcal{M})$ -线性函数. 在讨论光滑交错张量场与交错 $C^{\infty}(\mathcal{M})$ -线性函数的对应关系前, 先说明上述同态 Θ 是同构.

如果 $A, B \in \mathcal{T}^k(\mathcal{M})$ 满足 $\Theta(A) = \Theta(B)$, 则对任给 $p \in \mathcal{M}$ 以及含 p 的光滑坐标卡 (U, φ) , 设 φ 的坐标表示为 $(x_i)_{i=1}^n$, 那么存在 p 的开邻域 B 使得 $\overline{B} \subseteq U$. 考察 U 上坐标向量场在 \mathcal{M} 上的光滑延拓, 用 $\Theta(A), \Theta(B)$ 作用之, 可得 $A_p = B_p$, 所以 Θ 是单 $C^{\infty}(\mathcal{M})$ -模同态. 下面说明 Θ 是满射.

任取 k 重 $C^{\infty}(\mathcal{M})$ -线性函数 $\mathcal{A}:\mathfrak{X}(\mathcal{M})\times\cdots\times\mathfrak{X}(\mathcal{M})\to C^{\infty}(\mathcal{M})$. 我们先说明 \mathcal{A} 在光滑向量场 $X_1,...,X_k$ 下的像 $\mathcal{A}(X_1,...,X_k)$ 在每点 $p\in\mathcal{M}$ 处的取值由 X_i 在 p 附近的局部性态决定. 如果 X_i 在 p 的某个开邻域 U 上取值为零,不妨设 U 是含 p 的某个光滑坐标卡的定义域. 那么可构造光滑函数 $\psi:\mathcal{M}\to\mathbb{R}$ 使得 $\psi(p)=1$ 且 $\mathrm{Supp}\psi\subseteq U$. 进而 ψX_i 是零向量场,进而 $0=\mathcal{A}(X_1,...,\psi X_i,...,X_k)(p)=\psi(p)\mathcal{A}(X_1,...,X_k)(p)$,这说明 $\mathcal{A}(X_1,...,X_k)(p)=0$,因此 $\mathcal{A}(X_1,...,X_k)(p)$ 被 $X_1,...,X_k$ 在 p 附近的性态决定.

下面我们说明 \mathcal{A} 在光滑向量场 $X_1,...,X_k$ 下的像 $\mathcal{A}(X_1,...,X_k)$ 在每点 $p \in \mathcal{M}$ 处的取值由 $X_1|_p,...,X_k|_p$ 决定. 如果 $X_i|_p = 0$,设 X_i 在某个含 p 光滑坐标卡 (U,φ) 上可由局部坐标 $(x_i)_{i=1}^n$ 表示为

$$X_i = \sum_{j=1}^n X_i^j (\partial/\partial x_j).$$

这里每个分量函数 $X_i^j: U \to \mathbb{R}$ 光滑. 并且 $X_i^j(p) = 0, \forall 1 \leq j \leq n$.

设 p 有开邻域 $B \subseteq U$ 满足 $\overline{B} \subseteq U$, 将 \overline{B} 上坐标向量场 $\partial/\partial x_j$ 光滑地延拓到 \mathcal{M} 上,记作 E_j .同样把光滑函数 X_i^j 延拓为 \mathcal{M} 上,记作 f_i^j .则满足 $E_j|_B=(\partial/\partial x_j)|_B$ 以及 $f_i^j|_B=X_i^j$.那么在 B 上有 $\sum\limits_{j=1}^n f_i^j E_j=X_i$,进而由前面得到的 $\mathcal{A}(X_1,...,X_k)(p)$ 被 $X_1,...,X_k$ 在 p 附近的性态决定可知

$$\mathcal{A}(X_1,...,X_k)(p) = \mathcal{A}(X_1,...,X_{i-1},\sum_{j=1}^n f_i^j E_j,X_{i+1},...,X_k)(p) = \sum_{j=1}^n f_i^j(p)A(X_1,...,X_{i-1},E_j,X_{i+1},...,X_k)(p).$$

现在由 $f_i^j(p) = X_i^j(p) = 0$ 得到 $\mathcal{A}(X_1, ..., X_k)(p) = 0$, 这说明 $\mathcal{A}(X_1, ..., X_k)(p)$ 只依赖于 $X_1|_p, ..., X_k|_p$.

现在我们可以定义粗糙张量场 $A: \mathcal{M} \to T^k T^* \mathcal{M}, p \mapsto A_p$ 满足 $A_p(v_1, ..., v_k) = \mathcal{A}(V_1, ..., V_k)(p)$, 其中 V_j 是 v_j 在整个 \mathcal{M} 上的光滑延拓. 根据前面的讨论, $A_p: (T_p\mathcal{M})^k \to \mathbb{R}$ 是定义合理的映射, 于是由 \mathcal{A} 的多重线性性立即看到 A_p 是多重 \mathbb{R} -线性函数, 因此 \mathcal{A} 是定义合理的粗糙张量场. 现对任何光滑向量场 $X_1, ..., X_k$ 有

$$A(X_1,...,X_k)(p) = A_p(X_1|_p,...,X_k|_p) = A(X_1,...,X_k)(p), \forall p \in \mathcal{M}.$$

因此由 $A(X_1,...,X_k) \in C^{\infty}(\mathcal{M})$ 可知 $A \in \mathcal{T}^k(\mathcal{M})$. 进而由 A 的构造可知 $\Theta(A) = A$, 因此 Θ 是同构. 这里再指出当 A 是交错 $C^{\infty}(\mathcal{M})$ -线性函数时, 我们构造的张量场 A 也是交错的. 现将前面的讨论总结为

Theorem 1.1. 前面定义的 $C^{\infty}(\mathcal{M})$ -模同态 Θ 是模同构, 并且 $A \in \mathcal{T}^k(\mathcal{M})$ 交错当且仅当 $\Theta(A)$ 交错.

Remark. 该定理一般被称为张量刻画引理, 可类似对混合张量的情形证明相应结果.

记 $T^kT^*\mathcal{M}$ 中所有交错张量构成的子集为 $\Lambda^kT^*\mathcal{M}$, 即 $\Lambda^kT^*\mathcal{M} = \coprod_{p \in \mathcal{M}} \Lambda^{(k)}(T_p^*\mathcal{M})$, 我们有标准线性同构

$$\Lambda^{(k)}(T_p^*\mathcal{M}) \cong \wedge^k T_p^*\mathcal{M},$$

上式右侧是余切空间在 \mathbb{R} 上的 k 次外幂. 将上述同构视作等同, 可知在 p 的任何光滑坐标卡 (U,φ) 的局部坐标表示 $(x_i)_{i=1}^n$ 下, $\Lambda^{(k)}(T_p^*\mathcal{M})$ 有基 $\{dx_{i_1}|_p\wedge\cdots\wedge dx_{i_k}|_p|1\leq i_1\leq\cdots\leq i_k\leq n\}$. 可赋予 $\Lambda^kT^*\mathcal{M}$ 自然的拓扑结构与光滑结构使得它与标准投射 $\pi:\Lambda^kT^*\mathcal{M}\to\mathcal{M}$ 给出 \mathcal{M} 上光滑向量丛. 称 $\Lambda^kT^*\mathcal{M}$ 的截面为 \mathcal{M} 上微分 k-形式或 k-形式, k 被称为该形式的次数. 光滑的微分 k-形式有时也简称为光滑 k-形式. 我们把所有光滑 k-形式构成的 $C^\infty(\mathcal{M})$ -模记作 $\Omega^k(\mathcal{M})$. 例如 $\Omega^1(\mathcal{M})=\mathcal{T}^1(\mathcal{M})$. 那么根据 $\Lambda^kT^*\mathcal{M}$ 的定义以及 Θ 是保持交错性的模同构可知有 $C^\infty(\mathcal{M})$ -模同构 $\Omega^k(\mathcal{M})\cong\{\mathcal{A}:\mathfrak{X}(\mathcal{M})\times\cdots\times\mathfrak{X}(\mathcal{M})\to C^\infty(\mathcal{M})|\mathcal{A}$ 是交错多重 $C^\infty(\mathcal{M})$ -线性函数}. 特别地,我们得到 $C^\infty(\mathcal{M})$ -模同构 $\Omega^k(\mathcal{M})\cong \mathrm{Hom}_{C^\infty(\mathcal{M})}\left(\bigwedge_{C^\infty(\mathcal{M})}^k\mathfrak{X}(\mathcal{M}),C^\infty(\mathcal{M})\right)$.

由 Swan 定理, $\mathfrak{X}(\mathcal{M})$ 是有限生成投射 $C^{\infty}(\mathcal{M})$ -模, 所以有下述 $C^{\infty}(\mathcal{M})$ -模同构:

$$\Omega^k(\mathcal{M}) \cong \mathrm{Hom}_{C^{\infty}(\mathcal{M})}(\wedge_{C^{\infty}(\mathcal{M})}^k \mathfrak{X}(\mathcal{M}), C^{\infty}(\mathcal{M})) \cong \wedge_{C^{\infty}(\mathcal{M})}^k \mathrm{Hom}_{C^{\infty}(\mathcal{M})}(\mathfrak{X}(\mathcal{M}), C^{\infty}(\mathcal{M})) \cong \wedge_{C^{\infty}(\mathcal{M})}^k \Omega^1(\mathcal{M}).$$

Theorem 1.2. 设 \mathcal{M} 是光滑流形,则对任何自然数 k 有 $C^{\infty}(\mathcal{M})$ -模同构 $\Omega^k(\mathcal{M})\cong \bigwedge_{C^{\infty}(\mathcal{M})}^k \Omega^1(\mathcal{M})$.

因为 $\Omega^1(\mathcal{M})$ 作为有限生成 $C^{\infty}(\mathcal{M})$ -模总可由一些恰当形式生成, 所以 $\Omega^k(\mathcal{M})$ 中任何元素都形如

$$\sum_{1 \le i_1 < \dots < i_k \le n} f_{i_1 \dots i_k} dg_{i_1} \wedge \dots \wedge dg_{i_k},$$

其中 $f_{i_1\cdots i_k}, g_{i_1}, ..., g_{i_k} \in C^{\infty}(\mathcal{M})$. 在流形的局部上可把 $g_{i_1}, ..., g_{i_k}$ 选取为局部坐标的坐标余切向量场.

2 Kähler 高阶形式

设 R 是含幺交换环 K 上的交换代数, 记 $(\Omega(R), \delta)$ 是 R 的 Kähler 微分模. 如果 $R = C^{\infty}(\mathcal{M})$ 是光滑流 形 \mathcal{M} 的光滑函数环, 那么 R 作为 \mathbb{R} -代数决定的 Kähler 微分模 $(\Omega(C^{\infty}(\mathcal{M})), \delta)$ 与 $(\Omega^{1}(\mathcal{M}), d)$ 一般不同, 这 里 $d: C^{\infty}(\mathcal{M}) \to \Omega^{1}(\mathcal{M})$ 是微分映射. 反例可参见 [Nes03, p.229, Proposition 14.10].

受 [定理1.2] 启发, 对 K-交换代数 R, 对每个自然数 k, 我们将 Kähler 微分模 $\Omega(R)$ 在 R 上的 k 次外 幂 $\wedge_R^k \Omega(R)$ 记作 $\Omega^k(R)$. 其中的元素称为 R 的 **Kähler** k-**形式**. 如果 A 是 K 上本质有限型的交换代数, 由 Kähler 微分模的局部化性质易知 $\Omega^k(R)$ 是有限生成 R-模.

如果 R 是光滑的, 即满足任何 K-代数 S, 满足 $I^2=0$ 的理想 I 以及 K-代数同态 $\alpha:R\to S/I$, 都可将 α 提升到为 A 到 S 的 K-代数同态, 则可借助平凡扩张的性质证明 $\Omega(R)$ 是投射 R-模.

因此, 对本质有限型的光滑代数 R 以及自然数 k, 有 $\Omega^k(R)$ 是有限生成投射 R-模. 再结合 R-模同构

$$\mathfrak{X}^k(R) \cong \operatorname{Hom}_R(\Omega^k(R), R),$$

这里 $\mathfrak{X}^k(R) = \{F \in \operatorname{Hom}_K(\wedge_K^k R, R) | F$ 在每个分量上是K-导子 $\}$ 为 R 上交错 k 重 K-线性导子全体, 可知

$$\Omega^k(R) \cong \operatorname{Hom}_R(\mathfrak{X}^k(R), R).$$

Example 2.1. 对上式取 k=1, 则 $\mathfrak{X}^1(R)=\mathrm{Der}_KR$ 是 R 的导子模. 则 $\Omega(R)\cong\mathrm{Hom}_R(\mathrm{Der}_KR,R)$.

Remark. 当 $R = C^{\infty}(\mathcal{M})$ 是光滑流形 \mathcal{M} 的光滑函数环时, 同样有 $C^{\infty}(\mathcal{M})$ -模同构

$$\Omega^1(\mathcal{M}) \cong \operatorname{Hom}_{C^{\infty}(\mathcal{M})}(\mathfrak{X}(\mathcal{M}), C^{\infty}(\mathcal{M})),$$

因此交换代数上的导子是光滑向量场的代数推广, Kähler 1-形式是光滑 1-形式的代数类似物.

参考文献

- [Eis04] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Springer Science+Business Media, 2004.
- [Har77] R. Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 1977.
- [Lee12] J.M. Lee. Introduction to Smooth Manifolds, volume 218. Springer Science & Business Media, 2012.
- [Nes03] J. Nestruev. Smooth manifolds and observables, volume 220. Springer, 2003.