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Introduction

1 Basic Examples

1.1 Skew Polynomial Rings

In this section, we shall study the “twisted” verison of the polynomial ring, which is called the skew polynomial ring.
First consider the set of polynomials over a unital ring R, say X = {ag+a12+---+a,z"a; € R,0<i<n,n € N}.
Clearly, X has a natural additive group structure. Next, we shall define the multiplication over X. In order that
degrees behave appropriately, that is, one needs the fact that degf(x)g(x) < degf(z)+degg(x) for all f(x), g(z) € X,
it is required that za € Rx + R,Ya € R. So we may write xza = o(a)r + d(a). It is natrual to hope that
z(ab) = (za)b,Ya,b € R, which implies that o(ab) = o(a)o(b),Va,b € R and 6(ab) = o(a)d(b) + d(a)b for all
a,b € R. Motivated by the discussion above, we now give the following definition.

Definition 1.1. Let R be a unital ring and ¢ be a unital ring endomorphism of R. An endomorphism ¢ € End(R, +)
is said to be a o-derivation if d(ab) = o(a)d(b) + §(a)b for all a,b € R.

Remark. Clearly, for a o-derivation d, one has 6(1) = 0.

Given a unital ring R, an endomorphism ¢ and a o-derivation ¢, it is possible to construct a polynomial ring
as described above. Put E = End(RY, +), then one has a natural embedding R — E,a + a;, where a; denotes the
acting by left multiplication. One also has an element ¢ € E defined by ¥(a;)2, = (o(ai—1) + d(a;))52,, where
a_1 = 0. It is a quick check that a; = o(a);y + d(a); for all a € R.
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Now put © : X — E, a9+ a1z + -+ + apx™ — (ao); + (a1)10 + -+ + (an)i1¥"™, we shall give X a unital ring
structure via ©. Clearly, © is an additive group morphism and ©(1) = 1d ry. A basic observation is that

Claim. The map © is an injection.

Proof. Take any ag + a1z + - - + an,a™ € Ker®, then (ag); + (1)1 + -+ - + (an 1™ = 0. So

((ao)l + (al)lw +--+ (an)l1/)n)(170707 o ) = (a’Ova'lva'Qv o ')7
which shows that ag = a1 =---=a, =---=0. O

Since Ya; = o(a);¥) + §(a);,Va € R, Im® is closed under mutiplication and hence Im® is a subring of E. Thus
one can define

f-g=07Y6(f)e(y),Vfge X

to make X into a unital ring, which is called the skew polynomial ring and is denoted by R[z; 0o, d].
By definition, za = o(a)x + 6(a),Va € R in R[z;0,d]. It is obvious that R[z;0,d] is a ring extension of R, thus
R[z;0,0] is also called the Ore extension of R.
n
Suppose o is an automorphism, then each element in R[z;0,d] can be written in the form > z"a, in a unique
i=0
way. One can easily prove this by induction on n. The following notations will be used consistently throughout.

Example 1.2. Suppose o = idg, R[z;0,d] is written as R[x;d].
Example 1.3. Suppose 6 = 0, R[z;0, ] is written as R[z;o].

Clearly, R[x] = R[x;idg, 0], hence the skew polynomial ring can be viewed as a generalization of the classical
polynomial ring. And the Ore extension has the following universal property.

Proposition 1.4. The Ore extension R[z;o,d] of a unital ring R has the universal property that if n: R — S is a
unital ring homomorphism and y € S has the property that yn(a) = n(c(a))y +n(d(a)) for all a € R, then there is
a unique ring homomorphism 7 : R[z; 0, ] — S such that 7j(z) = y and the diagram

R ———  R[x;0,0]

commutes.

Proof. Set 77 : R[x;0,8] — S,a0 + a1z + -+ + apz™ — n(ag) + n(ar)y + - - - + n(an)y™. A direct check shows that
n(az)n(f) = nlaxf),Vf € R[zr;0,6]. Then one can show that 7(az™)7(f) = f(az™f),Vf € Rlx;0,0] by induction
on n. Thus the 7 is a ring homomorphism since it preserves addition. The uniqueness of 7 is clear. O

Now we note some ring theoretic properties of the Ore extension.

Theorem 1.5. Let R be a unital ring and R|[x; 0, 0] be an Ore extension of R.

(1)If o is injective and R is an integral domain, then R[z;0,d] is an integral domain.

(2)If R is a division ring, then R[z;0,d] is a principle left ideal domain.

(3)If o is an automorphism and R is a prime ring, then R[z; 0, ] is a prime ring.

(4)If o is surjective and R is right(left) Noetherian, then R[z;0,d] is right(respectively left) Noetherian.

Proof. (1)Take f =ag+arx+---+apz™, g =bg+brx+---+bpa™ with a,, b, nonzero, then fg has degree n+m
and leading coefficient a,,c™(b,,). Thus fg # 0.

(2)Clearly, we also has the division algorithm in R[z; o, d]. Thus for each nonzero left ideal of R[z;0,d], take a
monic polynomial in this left ideal with least degree, then one can easily check that this monic polynomial generates
the left ideal. It follows that the left ideal is principle.



(3)Take f = ag + a1z + -+ + apz™, g = by + b1z + - - - + byz™ with a,, b, nonzero, then we must show that
fR[z;0,0]lg # 0. Since o is injective, 0™ (by,) # 0, and so a,Ro™(by,) # 0. Take ¢ # 0 € a,Ro™(by,) and write
¢ = anao™(by,). Since o is also surjective, there is b € R with a = ¢™(b). It follows that ¢ = a,,6™(bb,,) # 0. Thus
fbg # 0, which implies 0 # fRg C fR[z;0,0]g as desired.

(4)Note that this is a generalization of Hilbert basis theorem, we shall prove it in a similar way.

Case 1. Suppose R is right Noetherian, we need to prove that R[z; o, d] is right Noetherian, too. Take any nonzero
right ideal B of R[x;0,/d], it suffices to show that B is finitely generated. Any element in R[z;o,d] has the form

> a;x'. For each natrual number n, let I,, be the set of b, € R such that there exists an element of the form
i=0

bpx™ + by_12" 4+ bz + by € B.
Since B is a right ideal and o is surjective, it is a quick check that I,, is a right ideal in R. It is obvious that
IhhchcChL<C---CI,C---.

Since R is right Noetherian, there is a positive integer N with Iy = Iy41 = ---. For each natural number
0 < k < N, we may assume that I has a finite generator set, say {b,lf,bi7 ...,b2"}. Then we have polynomials
fi= bfﬁxk + gj., where degg;, < k and 1 <14 < s3. Now it is easy to check that the finite set of polynomials

SN GO U S I S
generates B. It follows that R[z;0,d] is right Noetherian.
Case 2. The left case is similar. We leave it to the reader to check this. O

Remark 1.6. One shall notice that any surjective endomorphism of a Noetherian ring is injective.

For the Ore extension R[z;0,d], it is clear that R[z;0,d]/R[z;0,d]r = R as a left R[x;o0,d]-module. Thus we
obtain a presentation of R[z;0,0]: p : R[z;0,0] — End(R,+). Since za = o(a)z + 6(a),Va € R, it follows that
p(x)a = 6(a),Va € R. Clearly, p(b) = b;,Vb € R.

Exercise 1.1. Let R be a left Noetherian ring and o be a surjective ring endomorphism of R. Show that o is
injective.

Exercise 1.2. By Theorem 1.5(2), the Ore extension of a division ring is a principle left domain. Show that the
Ore extension of an integral domain may not be a principle left domain.

Exercise 1.3. Let R be a unital ring. Show that R is prime if and only if R[x] is prime.

Exercise 1.4. Let R be a unital ring and P be a prime ideal of R[z], show that P N R is a prime ideal of R.
Exercise 1.5. Let R be an integral domain with an irreducible submodule. Show that R is a division ring.
Exercise 1.6. Let R be a unital ring. Show that R is a division ring if and only if any left R-module is free.

Exercise 1.7. Let k be a field and A be a k-algebra. Recall that the Gelfand-Kirillov dimension of A is defined
by
GKdimA = supy, {limsup log,, dim, V"},
n—o0

where the supremum is taken over all finite-dimensional subspaces V' C A containing 14. For example, by a direct
computation, one can easily show that GKdimk[z, ..., 2,;,] = m. In general, one has GKdimA = k.dimA for any
commutative affine k-algebra A, where k.dimA denotes the Krull dimension of A. Prove that

GKdimA|[z; §] > GKdimA + 1,Vd € Dery A,

where Der A denotes the set of all k-derivations of A. Furthermore, suppose any finite dimensional subspace of A
is contained in some d-stable affine subalgebra of A, then GKdimA[x; 0] = GKdimA + 1.



1.2 Weyl Algebras

In this section, we introduce the notion of Weyl algebra, which is an example of an Ore extension. Throughout this
section, k denotes a field and k(X) denotes the free algebra on a set X. Now A, (k) denotes the k-algebra with 2n
generators xi, ..., Tn, Y1, ---, Yn and relations

Z;Y; — Y;T; = 055, the Kronecker delta,
and
T;X; — LT = YiY; — Y;Yi = 0
for all 1 < 4,5 < n. The algebra A, (k) is called the nth Weyl algebra over k, which first appeared in quantum

mechanics as an algebra generated by position and momentum operators. When n = 1, the generators are written
as x,y rather than x1,y;. In this case, A;(k) = k(z,y)/(xy — yz — 1). By definition, one has the following.

Basic Observation. The nth Weyl algebra is an affine algebra.

Now we consider an alternative description of the Weyl algebra. Consider the polynomial ring R = k[z1, ..., 4],
and set the sequence of rings Ry = R, R1 = Roly1, —0/0x1], Riv1 = Ri[yi+1; —0/0x;+1]. Clearly, any element in
R,, can be expressed in the form

Rk Ky J1 Jn ;
g Chyoebopjijn L1 Zpmyyt - -yl (finite sum)
k1, knsgisendn

uniquely. Then we show that the k-algebra R,, has generators which satisfy the relations which define the Weyl
algebra.

Lemma 1.7. Let R, be the k-algebra defined as above. Then R, is generated by {z1,...,Zn,¥1,...,Yn} as a
k-algebra and one has z;y; — y;z; = d;;, the Kronecker delta, and x;x; —x;z; = y;y; —y ¥ = 0 forall 1 < 4,5 < n.

Proof. By definition, R, is generated by {x1,...,Zn, Y1, ..., yn} and z;x; = z;x; for all 1 < 4,5 < n. Thus it remain
to check that x;y; — yjz; = 0;; and z;x; — 2325 = ¥y — ;4 = 0 for all 1 <4, 5 < n. It is a drict computation that

TilYj —YjTi = 5 Ti = 0ij-
J

Similarly, one can easily verify that y;y; = y;y; for all 1 <4,5 <n. O

By the lemma above, one gets a natural algebra morphism ¢ : A4, (k) — R,, such that the following diagram
commutes.
K{T1, ooy Ty YLy ooy Yn) ——————— Ap (k)

It is clear that any element in A, (k) can be written in the form
k kTIr j 47’1
Z Chykngign®1 0 Ty yil ey +
k17"'7k717j17"'aj7l
where T is the ideal of k{x1,...,Zn, Y1, ..., yn) generated by the relations which define the Weyl algebra. And
wl > Chyohngieejn @1 T Yi ey + 1) = > Chy i gn @1 T YL Y
kl:'“7kn7j17"-7j71 kl;--<7k'n7j17--<7jn
It follows that ¢ is an isomorphism. Thus one immediately obtains the following.

Proposition 1.8. Let R,, be the k-algebra defined as above. Then R,, = A, (k) as k-algebras.



Remark. Weyl algebra is an infinite dimensional algebra. One can also define Weyl algebra over a commutative
unital ring K, then the above discussion still holds, one has A, (K) = R, as K-algebras.

Hence we may identify A, (k) with R,. So any element in A, (k) can be expressed in the form

E k1 kn , J1 Jn ;
Chkyknjijnll " T Y1 " Yp (ﬁnlte Sum)

uniquely. Let us now record some basic ring theoretic properties of Weyl algebra.
Proposition 1.9. Let A4, (k) be the nth Weyl algebra. Then it is a Noetherian domain.
Proof. By Theorem 1.5(1), A,,(k) is an integral domain. And it is Noetherian by Theorem 1.5(4). O
Remark. Since any right Noetherian domain is a right Ore domain, A,,(k) has a right ring of quotients.
Proposition 1.10. Let A, (k) be the nth Weyl algebra. Then it is neither left Artinian nor right Artinian.
Proof. We have already seen that any element in A, (k) can be expressed in the form

Z Chy b gy TY cxknydt L ydn (finite sum)

K1k sd1 e ndn

uniquely. Thus one has two descending chains

and

O

Next we’ll show that the Weyl algebra over a field of characteristic 0 is simple. Before that, it is worthwhile to
point out the following, which is a straightforward verification.

Lemma 1.11. For any f € A,(k), x;f — fx; = 0f/0yi, yif — fyi = —0f/0x; for all 1 <i < n.
A direct application of the lemma above leads to the following theorem.
Theorem 1.12. If chark = 0, then the nth Weyl algebra over k is a Noetherian simple domain.

Proof. We have already shown that A, (k) is a Noetherian domain. So it remains to check that it is simple. Take
any nonzero ideal of A, (k), say J, and we pick a nonzero element

. k kn, J1 Jn
[= E Chyobpjieejn 1 T 0 Yy € .
k],-<~7kn7j1,--<7jn

By the lemma above, both 0f/0x; and 0f/0y; belong to J for 1 < i < n. Consider the leading term of f in the
lexicographical sense, say ckl...knjl..ijnx’fl coeglyltooydn then (Kilka!- - Enljalge! o dn!)Cky ok jrogn € J. Since
chark = 0, we conclude that 1 € J and hence J = A, (k). O

Remark. The assumption on the characteristic of k is essential. In fact, if chark = p > 0, then in A;(k),
™y — yx™ = max™ 1 Vm > 1. Hence 2Py = yzP. Thus A;(k)aP is a nonzero ideal C A;(k). Suppose A, (K) is
the Weyl algebra over a commutative ring of characteristic zero, by the same reasoning, A,,(K) is simple.

Corollary 1.13. If chark = 0, then any unital ring endomorphism of A4, (k) is injective.
In 1968, J. Dixmier asked the following, which is still an open problem today.

Dixmier conjecture ([Dix68]). If chark = 0, then any unital ring endomorphism of A, (k) is an automorphism.



Remark 1.14. It can be shown that Dixmier conjecture holds for all n > 1 if and only if the Jacobian Conjecture
holds for all n > 1[BKKO05].

A classical result in commutative algebra is that any commutative Noetherian ring that has only finite number
of prime ideals and all of these are maximal is Artinian. So it is natural to ask if the result holds in noncommutative
setting. As an application of Theorem 1.12, we give a negative answer to this question.

Corollary 1.15. There is a Noetherian ring that is not Artinian but has only finite number of prime ideals and
all of these are maximal.

Proof. Consider the Weyl algebra over a field of characteristic 0 is enough. O
We also show that Weyl algebra has no (nonzero) finite dimensional representations.
Proposition 1.16. Any nonzero module over Weyl algebra is infinite dimensional.

Proof. Suppose there is a nonzero finite dimensional module over A, (k), say V. Then one has a natural k-linear
map p : A, (k) — EndyV,a — a;, which is clearly a k-algebra morphism. Consider x1,y; € A, (k), by definition,
one has x1y1 — y1z1 = 1. Thus o(x1)0(y1) — o(y1)o(x1) = idy, which is absurd. Thus the result holds. O

Example 1.17 (Weyl algebra and ring of differential operators). Let k be a field of characteristic zero. Then
k[x1, ..., z,] is a left A, (k)-module with z1, ..., z,, acting by multiplication and y; acting as —9/0x;. A quick check
shows that

0 0
_(xi)l%j + gj(%’)l = 0ij
and
0 0 0 0

(fE )l(xj)l (xj)l(x )l al‘i 8.13] 81‘] axz
in Endy (k[z1, ..., x,]) for all 1 <4,j < n. Thus one has a well-defined map
p: Ap(k) = Endy (k[z1, ..., 25])
Z Chyooo o ThL - Tyl Z Chy -k jr-jn (331)1Cl "‘(l‘n)f"(—aj)jl "'(—%)j"
KivooEom g1 edn KsoKm g1 din 1 n

Clearly, p is a k-algebra morphism and Imyp is the subalgebra of Endy (k[z1, ..., 2,]). In fact, Imp is just the subalge-
bra generated by k[x1, ..., 2,] together with operators {9/0x1, ...,0/0x, }, which is called the ring of differential
operators with polynomial coefficients. Write Imp as A(k[z1, ..., z,]). Then p induces a surjective algebra mor-
phism from A, (k) to A(k[z1, ..., zy]), which is also injective since A, (k) is simple. Thus, A(k[z1, ..., z,]) = An (k).

Exercise 1.8. Show that a simple ring may not be Artinian.
Exercise 1.9. Show that the Weyl algebra is not a completely reducible module over itself.

Let k be a field of positive characteristic p and let A, (k) be the nth Weyl algebra. By Lemma 1.11,
for any f € Z(A,(k)), one has 9f/0x; = 0f/0y; = 0,¥1 < i < n. Thus there exists a polynomial g €
k{1, .., Tny Y1, .oy Yn) such that f = g(zf, ..., 28, y7,...,yP). It is clear that z,...,28,y},...,yP € Z(A,(k)), hence
Z(An(k)) =Kkl ...,22,y7,...,yP]. A similar argument can be applied to the characteristic zero case.

Exercise 1.10. If chark = 0, then the nth Weyl algebra over k is a central simple algebra, that is, Z(A4,(k)) = k.
Thus A, (k) is infinite dimensional over its center, which implies that A4, (k) is not P.I. by Kaplansky’s Theorem.

Exercise 1.11. Let A be an infinite dimensional simple k-algebra(e.g. Weyl algebra A,,(k) with chark = 0). Show
that any nonzero left module over A is infinite dimensional.



Exercise 1.12. A k-dervation of A = k|z1,...,x,] is a k-linear map D : A — A that satisfies Leibniz’s law
D(ab) = aD(b) + D(a)b,Va,b € A. Denote Deri A as the set of all k-dervations of A. Clearly, Dery A has a natural
A-module structure. Show that Dery A is freely generated by {9/0xz1,0/0xa, ...,0/0x,}. That is,

0 0 0
DergA=A— GA— - HA—.
i 8:101 ® 8$2 ® ® a:L'n

Exercise 1.13. Using the result of Exercise 1.7, show that GKdimA,, (k) = 2n, and hence

An(Ik)%”Am(]k),Vn 7& m € Zzl'



2 Rings of Differential Operators on Algebraic Varieties

2.1 Derivation Rings

Throughout this section, K denotes a commutative unital ring, A denotes a commutative K-algebra and k denotes
a field. The main object of study in this chapter is the derivation ring of a commutative K-algebra.

The set of all K-derivations of A is denoted by Der A. It is clear that Derg A is an A-module via (ad)(b) = ad(b)
for all § € DergA and a,b € A. A straightforward verification shows that the commutator of two dervations is
again a derivation. Thus this product gives Derx A the structure of K-Lie algebra. As in Exercise 1.12, one has

Proposition 2.1. Let A = K|z, ..., z,] be the polynomial algebra. Then Der A is freely generated by

9 9 9
Ox1’ Oxs’ 7 Oxy
That is,
0 0 0

Proof. For any derivation § € Derg A, a direct computation shows that

n
0

0= o(xg)=—.

k=1

Thus Der g A can be generated by {9/9z1,0/0xs,...,0/0x,} as an A-module. Suppose there are fi, ..., f, € A such
that
- 0
Z fiz—=0.
i—1 Oz;

Then f; = > fi(0/0x;)(x;) = 0,V1 < j < n, which follows that {0/0x1,0/0xs,...,0/0z,} is A-linearly indepen-
i=1

dent. Hence,_we obtain that

0 0 0
DergkA=A—QA—@ - - DA—.
K o0x1 @ 0xo G w oxy,

Since one has natural embedding A — Endg A4, a — a;, one can identify A with {a; € Endx Ala € A}.

Definition 2.2 (Derivation ring). The K-subalgebra of Endx A generated by A and Derg A is called the derivation
ring of A, which is denoted by A(A).

Remark 2.3. It is convenient to consider not only A(A) but also the K-subalgebras of A(A) generated by A and
d, where d is any A-submodule of Derg(A) closed under Lie product(see Exercise 2.1). This subalgebra will be
denoted by A[d], and hence A(A) = A[d].

Since A(A) is a subalgebra of Endx A, A is naturally a left A(A)-module. It is easy to see that A is a cyclic left
A(A)-module generated by 14. Set ¢ : A(A) = A,u +— uls and write I = Keryp = anna(4)(14), then there is an
exact sequence

0 —— T —— A(A) 25 A ——0.

Clearly, the exact sequence splits, thus A(A) = I & A. It is also clear that I O Derg A, thus I O A(A)Derg A.
Suppose I C A(A)Derg A, by definition of A(A), there is ¢ € A with ¢ € I — A(A)Derg A. But I N A = 0, which
forces ¢ to be zero. It follows that 0 ¢ A(A)Derg A, which is a contradiction. Hence I = A(A)Derx A and we
conclude that A(A) = A(A)Derg A @ A. Tt follows immediately that

Proposition 2.4. One has A = A(A)/A(A)Derg A as left A(A)-modules.



Example 2.5. If charK = 0, then A(K [z, ..., x,]) = A, (K).

Proof. Tt is obvious that there is a surjective K-algebra morphism from A, (K) to A(K[z1,...,x,]). Then the result
holds since A4, (K) is simple by Theorem 1.12. O

Remark 2.6. In general, for any affine variety V' C k", one can consider the derivation ring over V, that is,

Now let d be any A-submodule of Derg A closed under the Lie bracket. Since A[d] is generated by d as an A-
algebra, A[d] has a standard filtration over A based on d as a generating set. More precisely, for each natural number
m, put A[d],, be the A-submodule spanned by all products of at most m dervations from d, then {A[d],,}men is
the standard filtration of A[d]. From now on, grA[d] always refers to the associated graded ring of A[d] with respect
to the standard filtration mentioned above. Then one has the following observation.

Basic Observation. The associated graded ring grA[d] is commutative and there is a canonical surjection Sa(d) —
grA[d], where S4(d) denotes the symmetric algebra of d4.

Proof. Take 01,02 € d,a € A, then one has §1a — ad; = 1(a) and [d1,02] € d. The rest is clear now. O

Remark 2.7. Suppose an affine K-algebra R has some standard finite dimensional filtration with respect to
which grR is commutative, then R is called an almost commutative algebra. In general, A[d] is not almost
commutative]MR87, p. 571, 15.1.21].

Corollary 2.8. Suppose that d is finitely gnerated as an A-module. Then grA[d] is a commutative affine A-algebra.
Hence further if A is Noetherian, then grA[d] and A[d] are Noetherian.

Proof. By the result in Exercise 2.2, the first assertion is clear. The rest is clear by Exercise 2.5. O

Exercise 2.1. Consider the commutator of any two K-derivations of A: [d1,d2] = 0102 — d201,01,02 € Derg A.
Show that Derg A is closed under the bracket [—, —] and this makes Derx A into a K-Lie algebra.

Exercise 2.2. Suppose M is a finitely generated K-module, then the tensor algebra of M is an affine K-algebra.
Exercise 2.3. Let S be a filtered ring. If gr$S is an integral domain, then S is an integral domain.

Exercise 2.4. Let S be a filtered ring. If grS is prime, then S is prime, too.

Exercise 2.5. Let S be a filtered ring. If grS is (left)right Noetherian, then so is S.

Exercise 2.6. Let S be a filtered ring. If grS is (left)right Artinian, then so is S.

2.2 Kahler Differentials

Throughout this section, K denotes a commutative unital ring, A denotes a commutative K-algebra. For an A-
module M, recall that a K-dervation from A to M is a K-linear map ¢ : A — M satisfying Leibniz’s law. The set
of all K-derivations from A to M is denoted by Derg (A4, M). With this notation, Derx (A4, A) = Derg A.

Example 2.9. Let o : A — B be a K-algebra homomorphism between commutative K-algebras. Then for any
B-module M, Derg (A, M) has a natural B-module structure by defining b6 : A — M, a — bd(a),Vd € Derg (A, M).

Now we shall introduce the module of Kéhler differentials.



Definition 2.10. The Kahler differentials(or Kéhler differential module) of A is a pair (2(A), d) consisting of
an A-module Q(A) and a K-derivation d : A — (A) such that for any A-module M and K-derivation D : A — M,
there exists a unique A-linear map f : Q(A) - M with fd = D. That is, the diagram

A——94 Qa/k

commutes. Here the derivation d : A — Q(A) is called the universal derivation. Sometimes, we also denote Q(A)
as Qi (A) to make the context clear.

Remark. The r-th exterior power A"Q(A)(A is the wedge product over A) is denoted by Q7(A) and is called the
r-th Kahler differential forms. The elements of Q"(A) are called Kéhler r-forms.

Now we construct the Kéhler differential module. Let £2(A) be the A-module generated by the set {d(a)|a € A}
subject to the relations

d(aa’") = ad(a’) + d(a)d’,d(ka + k'a") = kd(a) + K'd(a’),Va,a’ € Ak, k' € K.

And set d : A — Q(A),a — d(a). Tt is a quick check that (Q(A),d) is the Kahler differential module of A.
Sometimes, we also call Q(A) the Kahler differential module of A. Since (Q(A),d) exists, it must be unique up to
isomorphism. By the definition of the Kéahler differential module, the following fact is clear.

Proposition 2.11. Let A be a commutative K-algebra and (2(A), d) be the Kéhler differential module of A. Then
we have the canonical isomorphism of A-modules Derg (A4, M) = Hom4(2(A), M). In fact, this gives a natural
isomorphism of Derg (A, —) with Hom 4 (2(A), —). Thus, Derg (A, —)is a representable functor.

Remark. We emphasize the importance of the above proposition is that we can describe something nonlin-
ear(derivations) in terms of something linear(module homomorphisms).

In particular, one has Derg A = Q(A)* as A-modules. We now specialize to the case of polynomial algebras. As
in Proposition 2.1, one has the following.

Proposition 2.12. Let A = K[z, ..., z,] be the polynomial algebra. Then 4, is a finite free K[z1, ..., 2, ]-module
with basis {dz1,dzs, ...,dz,}. That is,

O(A) = P K[z, ... wn]da;.
=1

Proof. By definition, Q(A) is generated by {dala € A}, so Q(A) can be generated by {dx1,dxs,...,dx,} since d is
a K-derivation. It remains to show that {dx1,dzs, ...,dz,} is A-linearly independent. Suppose Zn: fidz; = 0 for
some f; € A. Consider the partial derivation 0/0x; : A — A, by the universal property of (Q(A), ld:),l there exists a
unique A-linear map ¢; : Q(A) — A such that p;d = 9/0x;. Applying ¢; to i fidx; = 0 one finds f; =0. As j
is arbitrary we see that {dz1,dzs,...,dx,} is A-linearly independent. o O

Remark. It is not surprising that this result holds, since the free basis {0/0x1,9/0x2,...,0/0x,} of Derg (A, A)
corresponds to the dual basis of {dz1, ..., dz, }(See Proposition 2.1). And it is a direct computation that for each
feA, df € Q(A) can be expressed as

df = dx;.
=Lt
Corollary 2.13. Let A = K|x1,...,x,] be the polynomial algebra. Then for each integer 1 < r < n, the r-th
Kéhler differential forms Q7(A4) is free K[z1, ..., 2,]-module with basis {dz;, A -+ Adz; |1 < i3 < -+ < ip < n}.
Thus
0" (A) = @ Kz, ...,xn)dx;, A ANda;,..

1<i1<--<ip<n
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Proof. Recall that for any free K-module V of rank n with a basis {v1, ..., v, }, each exterior power A"V (1 <r < n)
has a basis {v;, A+~ Awv; |1 <ip <--- <i,. <n}. Thus the result holds. O

Remark. Given any n polynomials fi, ..., f, € A, one has
dfl N df2 VANCERWAN dfn = J(fl, f27 7fn)(dl‘1 ANdzg A+ A dl’n) S QZX/K’

where J(f1, fa, ..., fn) = det(0f;/0x;)nxn is the Jacobian determinant of fi, fa,..., f,. This can be verified by a
direct computation:

dfl/\dsz---/\dfn:(Zaaxﬁdmh)w-w( ggf‘dmin>
11=1 “ in=1 n

BN g:il ...gg (dws, A das)

11=112=1 in=1

0 Ofn

To(t)  OTo(n)

ocES,
= Z sgn(o) Oh ... Ok (dxy Adxo A -+ AN dxy)
oes, 8%0(1) axa(n)

= J(fl, fo, fn)(dl‘l ANdxg A+ A dxn)
Sometimes, we write the Jacobian determinant J(f1, fo, ..., frn) as

dfy Ndfa N -+ ANdfy
dry ANdxa A --- Ndxy,

Next, we study a simple consequence of Proposition 2.11.

Corollary 2.14. Suppose that charK = 0 and that Q(A) is free over A on a basis {day, ..., da, }, then:
(1)The set {ay,...,an,} is K-algebraic independent.

(2)The derivations 9/0a; extend uniquely from Klay, ..., ay] to A.

(3)Derg A is free on the basis {0/0aq, ...,0/0ay }.

(4)Each derivation on A is the unique extension of a derivation from Klay, ..., a,] to A.

Proof. (1)Suppose there exists a nonzero polynomial f € Klzq,...,x,] with f(ai,...,a,) = 0, without loss of
generality, one may assume that f is the polynomial which annihilates (ay,...,a,) with the least degree. By the
definition of the Kahler differentials, there are derivations d1,...,d, having the property that d;(a;) = d;j, the
Kronecker delta. Applying any §; to f one gets another polynomial identity of smaller degree. This observation
shows that there is another nonzero polynomial over K whose zero set contains (a1, ..., a,), contradction.
(2)Keep notations in (1), one can easily see that d; is the extension of 9/da;. Since Q(A) is free, clearly the
derivations 9/0a; extend uniquely from Klaq,...,a,] to A.
n
(3)Abuse of notation, write d; as 9/da;. Note that D = > D(a;)d;, VD € Derg A, the result holds obviously.
i=1

(4)Clear. O

Lemma 2.15 (The first fundamental exact sequence). Let A, B be commutative K-algebras, ¢ : A — B a K-
algebra homomorphisms and M a B-module. Then: (1)Homp(B ®4 Qx(A), M) = Derg (A, M) as A-modules.
(2)There are exact sequences of B-modules

(i) 0 —— Dera(B,M) —Z— Derg (B, M) —— Derg (A, M)

(il) B®4 Qx(A) —2 Qx(B) —2— Qu(B) — 0

with « being split injection if and only if 7 is surjective for all M.
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Proof. (1)One has the following natural isomorphism:
HomB(B XA QK(A), M) = HOIHA(QK(A), HOIDB(B, M)) = HOmA(QK(A), M) = DerK(A, M)

(2)In Example 2.9, we have already seen that Derg (A, M) has a natural B-module. Here we only prove
(ii) since (i) is a direct check. Write dy : A — Qg(A),dp : B — Qk(B),dy : B — Q4(B) for the univer-
sal derivations. By the universal property of d4, one can define « : B ®4 Qi (A) = Qg (B) via a(b ® daa) =
bdg(1(a)), which is clearly a B-module homomorphism. For the same reason, one may define a B-module homo-
morphism 8 : Qi (B) — Qa(B) via 8(dgb) = dzb. Applying Homp(—, M) to the sequence of homomorphisms

B®aQx(4) —— Qi (B) L, Q4(B) —— 0, one obtains the following commutative diagram.

Dery(B,M) ——7—— Derg (B, M) ——————— Derg (A, M)

T :

Homp(Q4(B), M) ——— Homp(Qx(B), M) —“— Homp (B ®4 Qx(A), M)

The rest is clear now. O

Corollary 2.16. Let A, B be commutative K-algebras, ) : A — B a K-algebra homomorphisms. If Qg (A4) = 0,
then Qg (B) = Q4(B) as B-modules.

Next we shall show that when A is K-affine and K is Noetherian, the derivation ring A(A) must be Noetherian.
Before that, we collect a few useful properties of Dery A.

Lemma 2.17 (The second fundamental exact sequence). Let A be a commutative K-algebra, I be a proper ideal
of A. Then for any A/I-module M, there are exact sequences of A-modules:

(1) 0 —— Derg(A/I, M) —2 Derg (A, M) —2— Hom (I, M);

(2) 0 I/12 2 AJT @4 Qp(A) —s Qu(A/I).

Proof. (1) is a direct verification. To see (2), define f'(a + I?) = 1 ® da, o/(1 ® da) = d(@). Then one gets

a sequence of A/I-module homomorphisms 0 —— I/I? £, AJT @4 Qi (A) -, Qk(A/I). For any A/I-

module M, applying Hom 4 ,;(—, M) to the above sequence, one gets the following commutative diagram:

Derg (A/I, M) a Derg (A, M) — 2 Homu(I, M)

ET Tg E

Hom a7 (Q (A/T), M) 2255 Homg /1 (A/T ®4 Qc(A), M) 255 Hom g, (1/12, M)

The rest is clear now. O

Proposition 2.18. Let A = K|x1,...,x,]/I for some proper ideal I C Klz1,...,x,]. Then there is an surjective
K[z, ...,xy]-module homomorphism {§ € Derg K[z, ...,x,]|0(I) C I} — DergA. And if K is Noetherian then
Derg A is a finitely generated A-module.

Proof. Write 7 : K[x1,...,z,] = Klx1,...,2,]/I for the natural projection. By Lemma 2.17, there is a canonical
injection

a: Derg(Klz,...,xn]/I) = Derg (K[z1, ..., z], K[21, ..., 0] /1)
fefr

One can also define an K|z, ..., #,;]-module homomorphism

0 : Derg K[z, ...,x,] = Derg (K[z1, ..., xy], K[T1, ..., 23] /1), g — 7g.

12



By using Proposition 2.1, one can easily show that 6 is surjective. Then 6 induces an A-module homomorphism
0:{6 € DergK[x1,...,z,)|[6(I) C I} — Derg A such that af = 6. Since « is injective, it follows readily that 6
is surjective. Now suppose K is Noetherian, then {0 € Derg K[z, ...,2,]|0(I) C I} is a Noetherian K[z, ...,2,]-
module. So it follows that Dergx A is a finitely A-module. O

The proposition leads quickly to the following well-known result.

Theorem 2.19. If K is Noetherian and A is K-affine, then grA(A) is a commutative affine K-algebra and hence
both grA(A) and A(A) are Noetherian.

Proof. By Corollary 2.8, it suffices to show that Dery A is finitely generated as an A-module, but this is clear. O

Exercise 2.7 (Another construction of the Kéhler differentials). Consider the multiplication map p: A ®x A —
A,a® b +— ab, it is a K-algebra homomorphism since A is commutative. Thus I = Kery is an ideal of A @k A.
We give A @k A an A-module structure by a - (b ® ¢) = ab ® ¢. Then clearly I is an A-submodule of A ® x A. Set
Qi (A) = I/I?, it is naturally an A-module. Put d : A — I/I?,a — (1 ®a — a® 1) + I,which is a K-linear map.
Show that:

(1)The K-map d : A — Qg (A) is a K-derivaion.

(2)The pair (24, d) constructed above is the Kéhler differential module of A and Q4 is generated by {dala € A}
as an A-module.

2.3 Localization of the Kahler Differentials

In this section we study the localization properties of the Kéhler differentials. Throughout this section, K denotes
a commutative unital ring, A denotes a commutative K-algebra and k denotes a field.

Lemma 2.20. Let S be a multiplicatively closed subset of A and
ts(A) = {a € R|there exists s € Ssuch that sa = 0}

be the S-torsion submodule of A. Then for any A-module M and § € Derg (A, M), we have
(1)o(ts(A)) € ts(M).

(2)6 induces a canonical derivation in Derg (A/ts(A), M/ts(M)).

(3)¢ induces a unique derivation D in Derg(Ag, Mg) such that the following diagram commutes:

A—— Ag

i |p
M — Ms

Proof. Since this lemma is a direct check, we only prove (3). Define D : Ag — Mg via

D(g) _ 5(a)55—2a5(s)

,Vae A,se S

Once we check that D is well-defined, it follows readily that D is the desired derivation. Suppose a1/s1 = as/s2,
then there is a u € S such that u(ssa; — sja2) = 0. Now we must show that there is a v € S such that it kills

52(6(ay)s1 — a10(s1)) — s3(0(az)s2 — azd(sz)).
In fact, one has

5%(6(@1)31 —a160(s1)) — S%(é(ag)SQ — a20(s2)) = slsgé(al) — alsgé(sl) — s%szé(ag) + s%a25(52)
= —81826(61182) — a1825(8182) — 81825(a281) + 81&26(8182)

= 751525(@152 — a251) + (51a2 — a152)5(5152).

Now take v = u? and the rest is clear. O
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The following corollary tells us that localization commutes with taking Kéhler differentials.

Corollary 2.21. Let S be a multiplicatively closed subset of A. Then there is an Ag-module isomorphism ¢ :
As @4 Qg (A) = Qi (As) which maps 1 ® da(a) into da,(as/s). In particular, (Qx(A4))s = Qx(As).

Proof. Consider the map 7 : Derg (B, M) — Derg (A, M) is Lemma 2.15, and setting B = Ag,v = Ag : A —
Ag,a+ as/s, then for any Ag-module M, one has a canonical isomorphism

v (Ms)s — M
x/s T
t st

and hence one gets the following commutative diagram:

M—r 5 M

| |

(Ms)s SR V)

It follows readily that 7 is surjective for any Ag-module M by Lemma 2.20. By Lemma 2.15, we obtain the
following exact sequence:

0 —— Ag®4 Qr(A) —2 Qp(As) —2 Qu(Ag) — 0

Note that for any s,t € S one has

S t ts ts  t
=53 =0(=-2)=25(= Der 4(As, M
0 6(8) J(St t) té(st),Vc?E era(Ag, M),
thus it follows immediately that the universal derivation d4, : As — Q4 (Ag) is the zero map. Therefore Q4(Ag) =0
and the rest is clear now. O

Recall that for any modules M, N over a commutative ring R, suppose M is finitely presented, then for any
multiplicatively closed subset of R, one has (Hompg(M, N))s = Hompg, (Mg, Ng) as Rg-modules. So we obtain

Corollary 2.22. Let K be Noetherian, A be K-affine and S be a multiplicatively closed subset of A. Then fot any
A-module M, Ag ® 4 Derg (A, M) = Derg (Ag, Ms) as Ag-modules.

Proof. By condition, A is Noetherian and Qg (A) is finitely generated as an A-module. In particular, Qg (A) is a
finitely presented module. It follows that (Hom (Qx (A), M))s = Homa, ((Qx(A))s, Ms) = Homa, (Qx(As), Ms).
The last isomorphism follows from Corollary 2.21. The result now follows by appyling Proposition 2.11. O

Remark 2.23. By a direct computation, one can deduce the fact that the isomorphism from (Derg (4, M))s to
Derg (Ag, Mg) maps §/s to §/s, where

g : As —Mg
b, ()t —d(t)b

t 2
Finally, we end this section by listing a theorem which gives connections with regular rings.

Theorem 2.24. Let A be an affine domain over a field k of characteristic 0, then A is regular if and only if Oy (A)
is projective. And if A is regular, then both Dery A and Qi (A) are finitely generated projective modules.

Proof. See [MRR7, p.577, Corollary 2.11 and Theorem 2.12]. O
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2.4 Rings of Differential Operators

Given a commutative algebra R over a field of characteristic 0, we shall define its ring of differential operators D(R).
This is a filtered k-algebra in which

D(R)o ={f € EndiR|fb; — b f =0,Yb € R} = {b; € EndxRlb€e R} 2 R
and suppose we have already defined D(R),_1 for p > 1, then we define

D(R), = {f € EndyR|fb—bf € D(R),_1 for all b € R}.

Thus D(R) = |J D(R),. By definition, clearly one has D(R),D(R)o C D(R),,Vp > 0. By induction on ¢ > 0, one
p=0

can easily show that D(R),D(R)qy C D(R)p+q, Vp,q > 0. Thus D(R) is indeed a filtered algebra.

Lemma 2.25. D(R); = R + DeryR.

Proof. Clearly, one has R + Dery R C D(R);. Conversely, take f € D(R)1, without loss of generality, assume that
f(1) =0, for otherwise one can relace f by f — f(1). Then for any a,b € R, one has

flab) —af(b) = (af = fa)(b) = f(a)b,
which completes the proof. O
Proposition 2.26. The ring of differential operators D(R) has A(R) as a filtered subring.
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