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Introduction

1 Basic Examples
1.1 Skew Polynomial Rings
In this section, we shall study the “twisted” verison of the polynomial ring, which is called the skew polynomial ring.
First consider the set of polynomials over a unital ring R, say X = {a0+a1x+ · · ·+anxn|ai ∈ R, 0 ≤ i ≤ n, n ∈ N}.
Clearly, X has a natural additive group structure. Next, we shall define the multiplication over X. In order that
degrees behave appropriately, that is, one needs the fact that degf(x)g(x) ≤ degf(x)+degg(x) for all f(x), g(x) ∈ X,
it is required that xa ∈ Rx + R, ∀a ∈ R. So we may write xa = σ(a)x + δ(a). It is natrual to hope that
x(ab) = (xa)b, ∀a, b ∈ R, which implies that σ(ab) = σ(a)σ(b), ∀a, b ∈ R and δ(ab) = σ(a)δ(b) + δ(a)b for all
a, b ∈ R. Motivated by the discussion above, we now give the following definition.

Definition 1.1. Let R be a unital ring and σ be a unital ring endomorphism of R. An endomorphism δ ∈ End(R,+)
is said to be a σ-derivation if δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ R.

Remark. Clearly, for a σ-derivation δ, one has δ(1) = 0.

Given a unital ring R, an endomorphism σ and a σ-derivation δ, it is possible to construct a polynomial ring
as described above. Put E = End(RN,+), then one has a natural embedding R→ E, a 7→ al, where al denotes the
acting by left multiplication. One also has an element ψ ∈ E defined by ψ(ai)

∞
i=0 = (σ(ai−1) + δ(ai))

∞
i=0, where

a−1 = 0. It is a quick check that ψal = σ(a)lψ + δ(a)l for all a ∈ R.
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Now put Θ : X → E, a0 + a1x + · · · + anx
n 7→ (a0)l + (a1)lψ + · · · + (an)lψ

n, we shall give X a unital ring
structure via Θ. Clearly, Θ is an additive group morphism and Θ(1) = idRN . A basic observation is that

Claim. The map Θ is an injection.

Proof. Take any a0 + a1x+ · · ·+ anx
n ∈ KerΘ, then (a0)l + (a1)lψ + · · ·+ (an)lψ

n = 0. So

((a0)l + (a1)lψ + · · ·+ (an)lψ
n)(1, 0, 0, · · · ) = (a0, a1, a2, · · · ),

which shows that a0 = a1 = · · · = an = · · · = 0.

Since ψal = σ(a)lψ + δ(a)l, ∀a ∈ R, ImΘ is closed under mutiplication and hence ImΘ is a subring of E. Thus
one can define

f · g = Θ−1(Θ(f)Θ(g)), ∀f, g ∈ X

to make X into a unital ring, which is called the skew polynomial ring and is denoted by R[x;σ, δ].
By definition, xa = σ(a)x+ δ(a), ∀a ∈ R in R[x;σ, δ]. It is obvious that R[x;σ, δ] is a ring extension of R, thus

R[x;σ, δ] is also called the Ore extension of R.
Suppose σ is an automorphism, then each element in R[x;σ, δ] can be written in the form

n∑
i=0

xnan in a unique

way. One can easily prove this by induction on n. The following notations will be used consistently throughout.

Example 1.2. Suppose σ = idR, R[x;σ, δ] is written as R[x; δ].

Example 1.3. Suppose δ = 0, R[x;σ, δ] is written as R[x;σ].

Clearly, R[x] = R[x; idR, 0], hence the skew polynomial ring can be viewed as a generalization of the classical
polynomial ring. And the Ore extension has the following universal property.

Proposition 1.4. The Ore extension R[x;σ, δ] of a unital ring R has the universal property that if η : R→ S is a
unital ring homomorphism and y ∈ S has the property that yη(a) = η(σ(a))y + η(δ(a)) for all a ∈ R, then there is
a unique ring homomorphism η : R[x;σ, δ] → S such that η(x) = y and the diagram

R R[x;σ, δ]

S

η
η

commutes.

Proof. Set η : R[x;σ, δ] → S, a0 + a1x + · · · + anx
n 7→ η(a0) + η(a1)y + · · · + η(an)y

n. A direct check shows that
η̃(ax)η̃(f) = η̃(axf), ∀f ∈ R[x;σ, δ]. Then one can show that η̃(axn)η̃(f) = η̃(axnf), ∀f ∈ R[x;σ, δ] by induction
on n. Thus the η̃ is a ring homomorphism since it preserves addition. The uniqueness of η̃ is clear.

Now we note some ring theoretic properties of the Ore extension.

Theorem 1.5. Let R be a unital ring and R[x;σ, δ] be an Ore extension of R.
(1)If σ is injective and R is an integral domain, then R[x;σ, δ] is an integral domain.
(2)If R is a division ring, then R[x;σ, δ] is a principle left ideal domain.
(3)If σ is an automorphism and R is a prime ring, then R[x;σ, δ] is a prime ring.
(4)If σ is surjective and R is right(left) Noetherian, then R[x;σ, δ] is right(respectively left) Noetherian.

Proof. (1)Take f = a0+a1x+ · · ·+anxn, g = b0+ b1x+ · · ·+ bmxm with an, bm nonzero, then fg has degree n+m
and leading coefficient anσn(bm). Thus fg 6= 0.

(2)Clearly, we also has the division algorithm in R[x;σ, δ]. Thus for each nonzero left ideal of R[x;σ, δ], take a
monic polynomial in this left ideal with least degree, then one can easily check that this monic polynomial generates
the left ideal. It follows that the left ideal is principle.
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(3)Take f = a0 + a1x + · · · + anx
n, g = b0 + b1x + · · · + bmx

m with an, bm nonzero, then we must show that
fR[x;σ, δ]g 6= 0. Since σ is injective, σn(bm) 6= 0, and so anRσ

n(bm) 6= 0. Take c 6= 0 ∈ anRσ
n(bm) and write

c = anaσ
n(bm). Since σ is also surjective, there is b ∈ R with a = σn(b). It follows that c = anσ

n(bbm) 6= 0. Thus
fbg 6= 0, which implies 0 6= fRg ⊆ fR[x;σ, δ]g as desired.

(4)Note that this is a generalization of Hilbert basis theorem, we shall prove it in a similar way.
Case 1. Suppose R is right Noetherian, we need to prove that R[x;σ, δ] is right Noetherian, too. Take any nonzero
right ideal B of R[x;σ, δ], it suffices to show that B is finitely generated. Any element in R[x;σ, δ] has the form
n∑
i=0

aix
i. For each natrual number n, let In be the set of bn ∈ R such that there exists an element of the form

bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0 ∈ B.

Since B is a right ideal and σ is surjective, it is a quick check that In is a right ideal in R. It is obvious that

I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · .

Since R is right Noetherian, there is a positive integer N with IN = IN+1 = · · · . For each natural number
0 ≤ k ≤ N , we may assume that Ik has a finite generator set, say {b1k, b2k, ..., b

sk
k }. Then we have polynomials

f ik = bikx
k + gik, where deggik < k and 1 ≤ i ≤ sk. Now it is easy to check that the finite set of polynomials

{f10 , ..., f
s0
0 , f11 , ..., f

s1
1 , ..., f1

N , ..., f
sN
N }

generates B. It follows that R[x;σ, δ] is right Noetherian.
Case 2. The left case is similar. We leave it to the reader to check this.

Remark 1.6. One shall notice that any surjective endomorphism of a Noetherian ring is injective.

For the Ore extension R[x;σ, δ], it is clear that R[x;σ, δ]/R[x;σ, δ]x ∼= R as a left R[x;σ, δ]-module. Thus we
obtain a presentation of R[x;σ, δ]: ρ : R[x;σ, δ] → End(R,+). Since xa = σ(a)x + δ(a), ∀a ∈ R, it follows that
ρ(x)a = δ(a), ∀a ∈ R. Clearly, ρ(b) = bl, ∀b ∈ R.

Exercise 1.1. Let R be a left Noetherian ring and σ be a surjective ring endomorphism of R. Show that σ is
injective.

Exercise 1.2. By Theorem 1.5(2), the Ore extension of a division ring is a principle left domain. Show that the
Ore extension of an integral domain may not be a principle left domain.

Exercise 1.3. Let R be a unital ring. Show that R is prime if and only if R[x] is prime.

Exercise 1.4. Let R be a unital ring and P be a prime ideal of R[x], show that P ∩R is a prime ideal of R.

Exercise 1.5. Let R be an integral domain with an irreducible submodule. Show that R is a division ring.

Exercise 1.6. Let R be a unital ring. Show that R is a division ring if and only if any left R-module is free.

Exercise 1.7. Let k be a field and A be a k-algebra. Recall that the Gelfand-Kirillov dimension of A is defined
by

GKdimA = supV {lim sup
n→∞

logn dimkV
n},

where the supremum is taken over all finite-dimensional subspaces V ⊆ A containing 1A. For example, by a direct
computation, one can easily show that GKdimk[x1, ..., xm] = m. In general, one has GKdimA = k.dimA for any
commutative affine k-algebra A, where k.dimA denotes the Krull dimension of A. Prove that

GKdimA[x; δ] ≥ GKdimA+ 1, ∀δ ∈ DerkA,

where DerkA denotes the set of all k-derivations of A. Furthermore, suppose any finite dimensional subspace of A
is contained in some δ-stable affine subalgebra of A, then GKdimA[x; δ] = GKdimA+ 1.
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1.2 Weyl Algebras
In this section, we introduce the notion of Weyl algebra, which is an example of an Ore extension. Throughout this
section, k denotes a field and k〈X〉 denotes the free algebra on a set X. Now An(k) denotes the k-algebra with 2n
generators x1, ..., xn, y1, ..., yn and relations

xiyj − yjxi = δij , the Kronecker delta,

and
xixj − xjxi = yiyj − yjyi = 0

for all 1 ≤ i, j ≤ n. The algebra An(k) is called the nth Weyl algebra over k, which first appeared in quantum
mechanics as an algebra generated by position and momentum operators. When n = 1, the generators are written
as x, y rather than x1, y1. In this case, A1(k) = k〈x, y〉/(xy − yx− 1). By definition, one has the following.

Basic Observation. The nth Weyl algebra is an affine algebra.

Now we consider an alternative description of the Weyl algebra. Consider the polynomial ring R = k[x1, ..., xn],
and set the sequence of rings R0 = R,R1 = R0[y1,−∂/∂x1], Ri+1 = Ri[yi+1;−∂/∂xi+1]. Clearly, any element in
Rn can be expressed in the form ∑

k1,...,kn,j1,...,jn

ck1···knj1···jnx
k1
1 · · ·xknn yj11 · · · yjnn (finite sum)

uniquely. Then we show that the k-algebra Rn has generators which satisfy the relations which define the Weyl
algebra.

Lemma 1.7. Let Rn be the k-algebra defined as above. Then Rn is generated by {x1, ..., xn, y1, ..., yn} as a
k-algebra and one has xiyj − yjxi = δij , the Kronecker delta, and xixj −xjxi = yiyj − yjyi = 0 for all 1 ≤ i, j ≤ n.

Proof. By definition, Rn is generated by {x1, ..., xn, y1, ..., yn} and xixj = xjxi for all 1 ≤ i, j ≤ n. Thus it remain
to check that xiyj − yjxi = δij and xixj − xjxi = yiyj − yjyi = 0 for all 1 ≤ i, j ≤ n. It is a drict computation that

xiyj − yjxi =
∂

∂xj
xi = δij .

Similarly, one can easily verify that yiyj = yjyi for all 1 ≤ i, j ≤ n.

By the lemma above, one gets a natural algebra morphism φ : An(k) → Rn such that the following diagram
commutes.

k〈x1, ..., xn, y1, ..., yn〉 An(k)

Rn

π

φ

It is clear that any element in An(k) can be written in the form∑
k1,...,kn,j1,...,jn

ck1···knj1···jnx
k1
1 · · ·xknn yj11 · · · yjnn + I,

where I is the ideal of k〈x1, ..., xn, y1, ..., yn〉 generated by the relations which define the Weyl algebra. And

φ(
∑

k1,...,kn,j1,...,jn

ck1···knj1···jnx
k1
1 · · ·xknn yj11 · · · yjnn + I) =

∑
k1,...,kn,j1,...,jn

ck1···knj1···jnx
k1
1 · · ·xknn yj11 · · · yjnn .

It follows that φ is an isomorphism. Thus one immediately obtains the following.

Proposition 1.8. Let Rn be the k-algebra defined as above. Then Rn ∼= An(k) as k-algebras.

4



Remark. Weyl algebra is an infinite dimensional algebra. One can also define Weyl algebra over a commutative
unital ring K, then the above discussion still holds, one has An(K) ∼= Rn as K-algebras.

Hence we may identify An(k) with Rn. So any element in An(k) can be expressed in the form∑
k1,...,kn,j1,...,jn

ck1···knj1···jnx
k1
1 · · ·xknn yj11 · · · yjnn (finite sum)

uniquely. Let us now record some basic ring theoretic properties of Weyl algebra.

Proposition 1.9. Let An(k) be the nth Weyl algebra. Then it is a Noetherian domain.

Proof. By Theorem 1.5(1), An(k) is an integral domain. And it is Noetherian by Theorem 1.5(4).

Remark. Since any right Noetherian domain is a right Ore domain, An(k) has a right ring of quotients.

Proposition 1.10. Let An(k) be the nth Weyl algebra. Then it is neither left Artinian nor right Artinian.

Proof. We have already seen that any element in An(k) can be expressed in the form∑
k1,...,kn,j1,...,jn

ck1···knj1···jnx
k1
1 · · ·xknn yj11 · · · yjnn (finite sum)

uniquely. Thus one has two descending chains

An(k)yn ⊋ An(k)y
2
n ⊋ An(k)y

3
n ⊋ · · ·

and
x1An(k) ⊋ x21An(k) ⊋ x31An(k) ⊋ · · · .

Next we’ll show that the Weyl algebra over a field of characteristic 0 is simple. Before that, it is worthwhile to
point out the following, which is a straightforward verification.

Lemma 1.11. For any f ∈ An(k), xif − fxi = ∂f/∂yi, yif − fyi = −∂f/∂xi for all 1 ≤ i ≤ n.

A direct application of the lemma above leads to the following theorem.

Theorem 1.12. If chark = 0, then the nth Weyl algebra over k is a Noetherian simple domain.

Proof. We have already shown that An(k) is a Noetherian domain. So it remains to check that it is simple. Take
any nonzero ideal of An(k), say J , and we pick a nonzero element

f =
∑

k1,...,kn,j1,...,jn

ck1···knj1···jnx
k1
1 · · ·xknn yj11 · · · yjnn ∈ J.

By the lemma above, both ∂f/∂xi and ∂f/∂yi belong to J for 1 ≤ i ≤ n. Consider the leading term of f in the
lexicographical sense, say ck1···knj1···jnx

k1
1 · · ·xknn yj11 · · · yjnn , then (k1!k2! · · · kn!j1!j2! · · · jn!)ck1···knj1···jn ∈ J . Since

chark = 0, we conclude that 1 ∈ J and hence J = An(k).

Remark. The assumption on the characteristic of k is essential. In fact, if chark = p > 0, then in A1(k),
xmy − yxm = mxm−1, ∀m ≥ 1. Hence xpy = yxp. Thus A1(k)x

p is a nonzero ideal ⊊ A1(k). Suppose An(K) is
the Weyl algebra over a commutative ring of characteristic zero, by the same reasoning, An(K) is simple.

Corollary 1.13. If chark = 0, then any unital ring endomorphism of An(k) is injective.

In 1968, J. Dixmier asked the following, which is still an open problem today.

Dixmier conjecture ([Dix68]). If chark = 0, then any unital ring endomorphism of An(k) is an automorphism.
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Remark 1.14. It can be shown that Dixmier conjecture holds for all n ≥ 1 if and only if the Jacobian Conjecture
holds for all n ≥ 1[BKK05].

A classical result in commutative algebra is that any commutative Noetherian ring that has only finite number
of prime ideals and all of these are maximal is Artinian. So it is natural to ask if the result holds in noncommutative
setting. As an application of Theorem 1.12, we give a negative answer to this question.

Corollary 1.15. There is a Noetherian ring that is not Artinian but has only finite number of prime ideals and
all of these are maximal.

Proof. Consider the Weyl algebra over a field of characteristic 0 is enough.

We also show that Weyl algebra has no (nonzero) finite dimensional representations.

Proposition 1.16. Any nonzero module over Weyl algebra is infinite dimensional.

Proof. Suppose there is a nonzero finite dimensional module over An(k), say V . Then one has a natural k-linear
map ρ : An(k) → EndkV, a 7→ al, which is clearly a k-algebra morphism. Consider x1, y1 ∈ An(k), by definition,
one has x1y1 − y1x1 = 1. Thus σ(x1)σ(y1)− σ(y1)σ(x1) = idV , which is absurd. Thus the result holds.

Example 1.17 (Weyl algebra and ring of differential operators). Let k be a field of characteristic zero. Then
k[x1, ..., xn] is a left An(k)-module with x1, ..., xn acting by multiplication and yi acting as −∂/∂xi. A quick check
shows that

−(xi)l
∂

∂xj
+

∂

∂xj
(xi)l = δij

and
(xi)l(xj)l − (xj)l(xi)l =

∂

∂xi

∂

∂xj
− ∂

∂xj

∂

∂xi
= 0

in Endk(k[x1, ..., xn]) for all 1 ≤ i, j ≤ n. Thus one has a well-defined map

ρ : An(k) → Endk(k[x1, ..., xn])∑
k1,...,kn,j1,...,jn

ck1···knj1···jnx
k1
1 · · ·xknn yj11 · · · yjnn 7→

∑
k1,...,kn,j1,...,jn

ck1···knj1···jn(x1)
k1
l · · · (xn)knl (− ∂

∂x1
)j1 · · · (− ∂

∂xn
)jn

Clearly, ρ is a k-algebra morphism and Imρ is the subalgebra of Endk(k[x1, ..., xn]). In fact, Imρ is just the subalge-
bra generated by k[x1, ..., xn] together with operators {∂/∂x1, ..., ∂/∂xn}, which is called the ring of differential
operators with polynomial coefficients. Write Imρ as ∆(k[x1, ..., xn]). Then ρ induces a surjective algebra mor-
phism from An(k) to ∆(k[x1, ..., xn]), which is also injective since An(k) is simple. Thus, ∆(k[x1, ..., xn]) ∼= An(k).

Exercise 1.8. Show that a simple ring may not be Artinian.

Exercise 1.9. Show that the Weyl algebra is not a completely reducible module over itself.

Let k be a field of positive characteristic p and let An(k) be the nth Weyl algebra. By Lemma 1.11,
for any f ∈ Z(An(k)), one has ∂f/∂xi = ∂f/∂yi = 0, ∀1 ≤ i ≤ n. Thus there exists a polynomial g ∈
k〈x1, ..., xn, y1, ..., yn〉 such that f = g(xp1, ..., x

p
n, y

p
1 , ..., y

p
n). It is clear that xp1, ..., xpn, y

p
1 , ..., y

p
n ∈ Z(An(k)), hence

Z(An(k)) = k[xp1, ..., x
p
n, y

p
1 , ..., y

p
n]. A similar argument can be applied to the characteristic zero case.

Exercise 1.10. If chark = 0, then the nth Weyl algebra over k is a central simple algebra, that is, Z(An(k)) = k.
Thus An(k) is infinite dimensional over its center, which implies that An(k) is not P.I. by Kaplansky’s Theorem.

Exercise 1.11. Let A be an infinite dimensional simple k-algebra(e.g. Weyl algebra An(k) with chark = 0). Show
that any nonzero left module over A is infinite dimensional.
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Exercise 1.12. A k-dervation of A = k[x1, ..., xn] is a k-linear map D : A → A that satisfies Leibniz’s law
D(ab) = aD(b) +D(a)b, ∀a, b ∈ A. Denote DerkA as the set of all k-dervations of A. Clearly, DerkA has a natural
A-module structure. Show that DerkA is freely generated by {∂/∂x1, ∂/∂x2, ..., ∂/∂xn}. That is,

DerkA = A
∂

∂x1
⊕A

∂

∂x2
⊕ · · · ⊕ A

∂

∂xn
.

Exercise 1.13. Using the result of Exercise 1.7, show that GKdimAn(k) = 2n, and hence

An(k) 6∼=Am(k), ∀n 6= m ∈ Z≥1.
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2 Rings of Differential Operators on Algebraic Varieties
2.1 Derivation Rings
Throughout this section, K denotes a commutative unital ring, A denotes a commutative K-algebra and k denotes
a field. The main object of study in this chapter is the derivation ring of a commutative K-algebra.

The set of all K-derivations of A is denoted by DerKA. It is clear that DerKA is an A-module via (aδ)(b) = aδ(b)
for all δ ∈ DerKA and a, b ∈ A. A straightforward verification shows that the commutator of two dervations is
again a derivation. Thus this product gives DerKA the structure of K-Lie algebra. As in Exercise 1.12, one has

Proposition 2.1. Let A = K[x1, ..., xn] be the polynomial algebra. Then DerKA is freely generated by

{ ∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn
}.

That is,
DerKA = A

∂

∂x1
⊕A

∂

∂x2
⊕ · · · ⊕ A

∂

∂xn
.

Proof. For any derivation δ ∈ DerKA, a direct computation shows that

δ =

n∑
k=1

δ(xk)
∂

∂xk
.

Thus DerKA can be generated by {∂/∂x1, ∂/∂x2, ..., ∂/∂xn} as an A-module. Suppose there are f1, ..., fn ∈ A such
that

n∑
i=1

fi
∂

∂xi
= 0.

Then fj =
n∑
i=1

fi(∂/∂xi)(xj) = 0, ∀1 ≤ j ≤ n, which follows that {∂/∂x1, ∂/∂x2, ..., ∂/∂xn} is A-linearly indepen-

dent. Hence, we obtain that
DerKA = A

∂

∂x1
⊕A

∂

∂x2
⊕ · · · ⊕ A

∂

∂xn
.

Since one has natural embedding A→ EndKA, a 7→ al, one can identify A with {al ∈ EndKA|a ∈ A}.

Definition 2.2 (Derivation ring). The K-subalgebra of EndKA generated by A and DerKA is called the derivation
ring of A, which is denoted by ∆(A).

Remark 2.3. It is convenient to consider not only ∆(A) but also the K-subalgebras of ∆(A) generated by A and
d, where d is any A-submodule of DerK(A) closed under Lie product(see Exercise 2.1). This subalgebra will be
denoted by A[d], and hence ∆(A) = A[d].

Since ∆(A) is a subalgebra of EndKA, A is naturally a left ∆(A)-module. It is easy to see that A is a cyclic left
∆(A)-module generated by 1A. Set φ : ∆(A) → A, u 7→ u1A and write I = Kerφ = ann∆(A)(1A), then there is an
exact sequence

0 I ∆(A) A 0.
φ

Clearly, the exact sequence splits, thus ∆(A) = I ⊕ A. It is also clear that I ⊇ DerKA, thus I ⊇ ∆(A)DerKA.
Suppose I ⊊ ∆(A)DerKA, by definition of ∆(A), there is c ∈ A with c ∈ I −∆(A)DerKA. But I ∩ A = 0, which
forces c to be zero. It follows that 0 /∈ ∆(A)DerKA, which is a contradiction. Hence I = ∆(A)DerKA and we
conclude that ∆(A) = ∆(A)DerKA⊕A. It follows immediately that

Proposition 2.4. One has A ∼= ∆(A)/∆(A)DerKA as left ∆(A)-modules.
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Example 2.5. If charK = 0, then ∆(K[x1, ..., xn]) ∼= An(K).

Proof. It is obvious that there is a surjective K-algebra morphism from An(K) to ∆(K[x1, ..., xn]). Then the result
holds since An(K) is simple by Theorem 1.12.

Remark 2.6. In general, for any affine variety V ⊆ k
n, one can consider the derivation ring over V , that is,

∆

(
k[x1, ..., xn]

I(V )

)
.

Now let d be any A-submodule of DerKA closed under the Lie bracket. Since A[d] is generated by d as an A-
algebra, A[d] has a standard filtration over A based on d as a generating set. More precisely, for each natural number
m, put A[d]m be the A-submodule spanned by all products of at most m dervations from d, then {A[d]m}m∈N is
the standard filtration of A[d]. From now on, grA[d] always refers to the associated graded ring of A[d] with respect
to the standard filtration mentioned above. Then one has the following observation.

Basic Observation. The associated graded ring grA[d] is commutative and there is a canonical surjection SA(d) →
grA[d], where SA(d) denotes the symmetric algebra of dA.

Proof. Take δ1, δ2 ∈ d, a ∈ A, then one has δ1a− aδ1 = δ1(a) and [δ1, δ2] ∈ d. The rest is clear now.

Remark 2.7. Suppose an affine K-algebra R has some standard finite dimensional filtration with respect to
which grR is commutative, then R is called an almost commutative algebra. In general, A[d] is not almost
commutative[MR87, p. 571, 15.1.21].

Corollary 2.8. Suppose that d is finitely gnerated as an A-module. Then grA[d] is a commutative affine A-algebra.
Hence further if A is Noetherian, then grA[d] and A[d] are Noetherian.

Proof. By the result in Exercise 2.2, the first assertion is clear. The rest is clear by Exercise 2.5.

Exercise 2.1. Consider the commutator of any two K-derivations of A: [δ1, δ2] = δ1δ2 − δ2δ1, δ1, δ2 ∈ DerKA.
Show that DerKA is closed under the bracket [−,−] and this makes DerKA into a K-Lie algebra.

Exercise 2.2. Suppose M is a finitely generated K-module, then the tensor algebra of M is an affine K-algebra.

Exercise 2.3. Let S be a filtered ring. If grS is an integral domain, then S is an integral domain.

Exercise 2.4. Let S be a filtered ring. If grS is prime, then S is prime, too.

Exercise 2.5. Let S be a filtered ring. If grS is (left)right Noetherian, then so is S.

Exercise 2.6. Let S be a filtered ring. If grS is (left)right Artinian, then so is S.

2.2 Kähler Differentials
Throughout this section, K denotes a commutative unital ring, A denotes a commutative K-algebra. For an A-
module M , recall that a K-dervation from A to M is a K-linear map δ : A→M satisfying Leibniz’s law. The set
of all K-derivations from A to M is denoted by DerK(A,M). With this notation, DerK(A,A) = DerKA.

Example 2.9. Let α : A → B be a K-algebra homomorphism between commutative K-algebras. Then for any
B-module M , DerK(A,M) has a natural B-module structure by defining bδ : A→M,a 7→ bδ(a), ∀δ ∈ DerK(A,M).

Now we shall introduce the module of Kähler differentials.
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Definition 2.10. The Kähler differentials(or Kähler differential module) of A is a pair (Ω(A), d) consisting of
an A-module Ω(A) and a K-derivation d : A→ Ω(A) such that for any A-module M and K-derivation D : A→M ,
there exists a unique A-linear map f : Ω(A) →M with fd = D. That is, the diagram

A ΩA/K

M

D

d

f

commutes. Here the derivation d : A→ Ω(A) is called the universal derivation. Sometimes, we also denote Ω(A)
as ΩK(A) to make the context clear.
Remark. The r-th exterior power ∧rΩ(A)(∧ is the wedge product over A) is denoted by Ωr(A) and is called the
r-th Kähler differential forms. The elements of Ωr(A) are called Kähler r-forms.

Now we construct the Kähler differential module. Let Ω(A) be the A-module generated by the set {d(a)|a ∈ A}
subject to the relations

d(aa′) = ad(a′) + d(a)a′, d(ka+ k′a′) = kd(a) + k′d(a′), ∀a, a′ ∈ A, k, k′ ∈ K.

And set d : A → Ω(A), a 7→ d(a). It is a quick check that (Ω(A), d) is the Kähler differential module of A.
Sometimes, we also call Ω(A) the Kähler differential module of A. Since (Ω(A), d) exists, it must be unique up to
isomorphism. By the definition of the Kähler differential module, the following fact is clear.
Proposition 2.11. Let A be a commutative K-algebra and (Ω(A), d) be the Kähler differential module of A. Then
we have the canonical isomorphism of A-modules DerK(A,M) ∼= HomA(Ω(A),M). In fact, this gives a natural
isomorphism of DerK(A,−) with HomA(Ω(A),−). Thus, DerK(A,−)is a representable functor.
Remark. We emphasize the importance of the above proposition is that we can describe something nonlin-
ear(derivations) in terms of something linear(module homomorphisms).

In particular, one has DerKA ∼= Ω(A)∗ as A-modules. We now specialize to the case of polynomial algebras. As
in Proposition 2.1, one has the following.
Proposition 2.12. Let A = K[x1, ..., xn] be the polynomial algebra. Then ΩA/K is a finite free K[x1, ..., xn]-module
with basis {dx1, dx2, ..., dxn}. That is,

Ω(A) =

n⊕
i=1

K[x1, ..., xn]dxi.

Proof. By definition, Ω(A) is generated by {da|a ∈ A}, so Ω(A) can be generated by {dx1, dx2, ..., dxn} since d is
a K-derivation. It remains to show that {dx1, dx2, ..., dxn} is A-linearly independent. Suppose

n∑
i=1

fidxi = 0 for

some fi ∈ A. Consider the partial derivation ∂/∂xj : A→ A, by the universal property of (Ω(A), d), there exists a
unique A-linear map φj : Ω(A) → A such that φjd = ∂/∂xj . Applying φj to

n∑
i=1

fidxi = 0 one finds fj = 0. As j

is arbitrary we see that {dx1, dx2, ..., dxn} is A-linearly independent.

Remark. It is not surprising that this result holds, since the free basis {∂/∂x1, ∂/∂x2, ..., ∂/∂xn} of DerK(A,A)
corresponds to the dual basis of {dx1, ..., dxn}(See Proposition 2.1). And it is a direct computation that for each
f ∈ A, df ∈ Ω(A) can be expressed as

df =

n∑
i=1

∂f

∂xi
dxi.

Corollary 2.13. Let A = K[x1, ..., xn] be the polynomial algebra. Then for each integer 1 ≤ r ≤ n, the r-th
Kähler differential forms Ωr(A) is free K[x1, ..., xn]-module with basis {dxi1 ∧ · · · ∧ dxir |1 ≤ i1 < · · · < ir ≤ n}.
Thus

Ωr(A) =
⊕

1≤i1<···<ir≤n

K[x1, ..., xn]dxi1 ∧ · · · ∧ dxir .
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Proof. Recall that for any free K-module V of rank n with a basis {v1, ..., vn}, each exterior power ∧rV (1 ≤ r ≤ n)
has a basis {vi1 ∧ · · · ∧ vir |1 ≤ i1 < · · · < ir ≤ n}. Thus the result holds.

Remark. Given any n polynomials f1, ..., fn ∈ A, one has

df1 ∧ df2 ∧ · · · ∧ dfn = J(f1, f2, ..., fn)(dx1 ∧ dx2 ∧ · · · ∧ dxn) ∈ ΩnA/K ,

where J(f1, f2, ..., fn) = det(∂fi/∂xj)n×n is the Jacobian determinant of f1, f2, ..., fn. This can be verified by a
direct computation:

df1 ∧ df2 ∧ · · · ∧ dfn =

(
n∑

i1=1

∂f1
∂xi1

dxi1

)
∧ · · · ∧

(
n∑

in=1

∂fn
∂xin

dxin

)

=

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

∂f1
∂xi1

· · · ∂fn
∂xin

(dxi1 ∧ · · · dxin)

=
∑
σ∈Sn

∂f1
∂xσ(1)

· · · ∂fn
∂xσ(n)

(dxσ(1) ∧ · · · dxσ(n))

=
∑
σ∈Sn

sgn(σ) ∂f1
∂xσ(1)

· · · ∂fn
∂xσ(n)

(dx1 ∧ dx2 ∧ · · · ∧ dxn)

= J(f1, f2, ..., fn)(dx1 ∧ dx2 ∧ · · · ∧ dxn).

Sometimes, we write the Jacobian determinant J(f1, f2, ..., fn) as

df1 ∧ df2 ∧ · · · ∧ dfn
dx1 ∧ dx2 ∧ · · · ∧ dxn

.

Next, we study a simple consequence of Proposition 2.11.

Corollary 2.14. Suppose that charK = 0 and that Ω(A) is free over A on a basis {da1, ..., dan}, then:
(1)The set {a1, ..., an} is K-algebraic independent.
(2)The derivations ∂/∂ai extend uniquely from K[a1, ..., an] to A.
(3)DerKA is free on the basis {∂/∂a1, ..., ∂/∂an}.
(4)Each derivation on A is the unique extension of a derivation from K[a1, ..., an] to A.

Proof. (1)Suppose there exists a nonzero polynomial f ∈ K[x1, ..., xn] with f(a1, ..., an) = 0, without loss of
generality, one may assume that f is the polynomial which annihilates (a1, ..., an) with the least degree. By the
definition of the Kähler differentials, there are derivations δ1, ..., δn having the property that δi(aj) = δij , the
Kronecker delta. Applying any δi to f one gets another polynomial identity of smaller degree. This observation
shows that there is another nonzero polynomial over K whose zero set contains (a1, ..., an), contradction.

(2)Keep notations in (1), one can easily see that δi is the extension of ∂/∂ai. Since Ω(A) is free, clearly the
derivations ∂/∂ai extend uniquely from K[a1, ..., an] to A.

(3)Abuse of notation, write δi as ∂/∂ai. Note that D =
n∑
i=1

D(ai)δi, ∀D ∈ DerKA, the result holds obviously.

(4)Clear.

Lemma 2.15 (The first fundamental exact sequence). Let A,B be commutative K-algebras, ψ : A → B a K-
algebra homomorphisms and M a B-module. Then: (1)HomB(B ⊗A ΩK(A),M) ∼= DerK(A,M) as A-modules.
(2)There are exact sequences of B-modules
(i) 0 DerA(B,M) DerK(B,M) DerK(A,M)σ τ

(ii) B ⊗A ΩK(A) ΩK(B) ΩA(B) 0α β

with α being split injection if and only if τ is surjective for all BM .
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Proof. (1)One has the following natural isomorphism:

HomB(B ⊗A ΩK(A),M) ∼= HomA(ΩK(A),HomB(B,M)) ∼= HomA(ΩK(A),M) ∼= DerK(A,M).

(2)In Example 2.9, we have already seen that DerK(A,M) has a natural B-module. Here we only prove
(ii) since (i) is a direct check. Write dA : A → ΩK(A), dB : B → ΩK(B), d′B : B → ΩA(B) for the univer-
sal derivations. By the universal property of dA, one can define α : B ⊗A ΩK(A) → ΩK(B) via α(b ⊗ dAa) =
bdB(ψ(a)), which is clearly a B-module homomorphism. For the same reason, one may define a B-module homo-
morphism β : ΩK(B) → ΩA(B) via β(dBb) = d′Bb. Applying HomB(−,M) to the sequence of homomorphisms
B ⊗A ΩK(A) ΩK(B) ΩA(B) 0α β , one obtains the following commutative diagram.

DerA(B,M) DerK(B,M) DerK(A,M)

HomB(ΩA(B),M) HomB(ΩK(B),M) HomB(B ⊗A ΩK(A),M)

σ τ

β∗

∼=

α∗

∼= ∼=

The rest is clear now.

Corollary 2.16. Let A,B be commutative K-algebras, ψ : A → B a K-algebra homomorphisms. If ΩK(A) = 0,
then ΩK(B) ∼= ΩA(B) as B-modules.

Next we shall show that when A is K-affine and K is Noetherian, the derivation ring ∆(A) must be Noetherian.
Before that, we collect a few useful properties of DerKA.

Lemma 2.17 (The second fundamental exact sequence). Let A be a commutative K-algebra, I be a proper ideal
of A. Then for any A/I-module M , there are exact sequences of A-modules:
(1) 0 DerK(A/I,M) DerK(A,M) HomA(I,M);α β

(2) 0 I/I2 A/I ⊗A ΩK(A) ΩK(A/I).
β′

α′

Proof. (1) is a direct verification. To see (2), define β′(a + I2) = 1 ⊗ da, α′(1 ⊗ da) = d(a). Then one gets
a sequence of A/I-module homomorphisms 0 I/I2 A/I ⊗A ΩK(A) ΩK(A/I).

β′
α′

For any A/I-
module M , applying HomA/I(−,M) to the above sequence, one gets the following commutative diagram:

DerK(A/I,M) DerK(A,M) HomA(I,M)

HomA/I(ΩK(A/I),M) HomA/I(A/I ⊗A ΩK(A),M) HomA/I(I/I
2,M)

α β

∼=
(α′)∗

∼=
(β′)∗

∼=

The rest is clear now.

Proposition 2.18. Let A = K[x1, ..., xn]/I for some proper ideal I ⊆ K[x1, ..., xn]. Then there is an surjective
K[x1, ..., xn]-module homomorphism {δ ∈ DerKK[x1, ..., xn]|δ(I) ⊆ I} → DerKA. And if K is Noetherian then
DerKA is a finitely generated A-module.

Proof. Write π : K[x1, ..., xn] → K[x1, ..., xn]/I for the natural projection. By Lemma 2.17, there is a canonical
injection

α : DerK(K[x1, ..., xn]/I) → DerK(K[x1, ..., xn],K[x1, ..., xn]/I)

f 7→ fπ

One can also define an K[x1, ..., xn]-module homomorphism

θ : DerKK[x1, ..., xn] → DerK(K[x1, ..., xn],K[x1, ..., xn]/I), g 7→ πg.
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By using Proposition 2.1, one can easily show that θ is surjective. Then θ induces an A-module homomorphism
θ̃ : {δ ∈ DerKK[x1, ..., xn]|δ(I) ⊆ I} → DerKA such that αθ̃ = θ. Since α is injective, it follows readily that θ̃
is surjective. Now suppose K is Noetherian, then {δ ∈ DerKK[x1, ..., xn]|δ(I) ⊆ I} is a Noetherian K[x1, ..., xn]-
module. So it follows that DerKA is a finitely A-module.

The proposition leads quickly to the following well-known result.

Theorem 2.19. If K is Noetherian and A is K-affine, then gr∆(A) is a commutative affine K-algebra and hence
both gr∆(A) and ∆(A) are Noetherian.

Proof. By Corollary 2.8, it suffices to show that DerKA is finitely generated as an A-module, but this is clear.

Exercise 2.7 (Another construction of the Kähler differentials). Consider the multiplication map µ : A ⊗K A →
A, a ⊗ b 7→ ab, it is a K-algebra homomorphism since A is commutative. Thus I = Kerµ is an ideal of A ⊗K A.
We give A⊗K A an A-module structure by a · (b⊗ c) = ab⊗ c. Then clearly I is an A-submodule of A⊗K A. Set
ΩK(A) = I/I2, it is naturally an A-module. Put d : A → I/I2, a 7→ (1 ⊗ a − a ⊗ 1) + I,which is a K-linear map.
Show that:
(1)The K-map d : A→ ΩK(A) is a K-derivaion.
(2)The pair (ΩA/K , d) constructed above is the Kähler differential module of A and ΩA/K is generated by {da|a ∈ A}
as an A-module.

2.3 Localization of the Kähler Differentials
In this section we study the localization properties of the Kähler differentials. Throughout this section, K denotes
a commutative unital ring, A denotes a commutative K-algebra and k denotes a field.

Lemma 2.20. Let S be a multiplicatively closed subset of A and

tS(A) = {a ∈ R|there exists s ∈ Ssuch that sa = 0}

be the S-torsion submodule of A. Then for any A-module M and δ ∈ DerK(A,M), we have
(1)δ(tS(A)) ⊆ tS(M).
(2)δ induces a canonical derivation in DerK(A/tS(A),M/tS(M)).
(3)δ induces a unique derivation D in DerK(AS ,MS) such that the following diagram commutes:

A AS

M MS

δ D

Proof. Since this lemma is a direct check, we only prove (3). Define D : AS →MS via

D(
a

s
) =

δ(a)s− aδ(s)

s2
, ∀a ∈ A, s ∈ S.

Once we check that D is well-defined, it follows readily that D is the desired derivation. Suppose a1/s1 = a2/s2,
then there is a u ∈ S such that u(s2a1 − s1a2) = 0. Now we must show that there is a v ∈ S such that it kills

s22(δ(a1)s1 − a1δ(s1))− s21(δ(a2)s2 − a2δ(s2)).

In fact, one has

s22(δ(a1)s1 − a1δ(s1))− s21(δ(a2)s2 − a2δ(s2)) = s1s
2
2δ(a1)− a1s

2
2δ(s1)− s21s2δ(a2) + s21a2δ(s2)

= −s1s2δ(a1s2)− a1s2δ(s1s2)− s1s2δ(a2s1) + s1a2δ(s1s2)

= −s1s2δ(a1s2 − a2s1) + (s1a2 − a1s2)δ(s1s2).

Now take v = u2 and the rest is clear.

13



The following corollary tells us that localization commutes with taking Kähler differentials.

Corollary 2.21. Let S be a multiplicatively closed subset of A. Then there is an AS-module isomorphism φ :
AS ⊗A ΩK(A) → ΩK(AS) which maps 1⊗ dA(a) into dAS

(as/s). In particular, (ΩK(A))S ∼= ΩK(AS).

Proof. Consider the map τ : DerK(B,M) → DerK(A,M) is Lemma 2.15, and setting B = AS , ψ = λS : A →
AS , a 7→ as/s, then for any AS-module M , one has a canonical isomorphism

ξM : (MS)S →M

x/s

t
7→ x

st

and hence one gets the following commutative diagram:

M M

(MS)S M

1

1

ξM

It follows readily that τ is surjective for any AS-module M by Lemma 2.20. By Lemma 2.15, we obtain the
following exact sequence:

0 AS ⊗A ΩK(A) ΩK(AS) ΩA(AS) 0
φ ψ

Note that for any s, t ∈ S one has

0 = δ(
s

s
) = δ(

t

st
· ts
t
) =

ts

t
δ(
t

st
), ∀δ ∈ DerA(AS ,M),

thus it follows immediately that the universal derivation dAS
: AS → ΩA(AS) is the zero map. Therefore ΩA(AS) = 0

and the rest is clear now.

Recall that for any modules M,N over a commutative ring R, suppose M is finitely presented, then for any
multiplicatively closed subset of R, one has (HomR(M,N))S ∼= HomRS

(MS , NS) as RS-modules. So we obtain

Corollary 2.22. Let K be Noetherian, A be K-affine and S be a multiplicatively closed subset of A. Then fot any
A-module M , AS ⊗A DerK(A,M) ∼= DerK(AS ,MS) as AS-modules.

Proof. By condition, A is Noetherian and ΩK(A) is finitely generated as an A-module. In particular, ΩK(A) is a
finitely presented module. It follows that (HomA(ΩK(A),M))S ∼= HomAS

((ΩK(A))S ,MS) ∼= HomAS
(ΩK(AS),MS).

The last isomorphism follows from Corollary 2.21. The result now follows by appyling Proposition 2.11.

Remark 2.23. By a direct computation, one can deduce the fact that the isomorphism from (DerK(A,M))S to
DerK(AS ,MS) maps δ/s to δ̃/s, where

δ̃ : AS →MS

b

t
7→ δ(b)t− δ(t)b

t2
.

Finally, we end this section by listing a theorem which gives connections with regular rings.

Theorem 2.24. Let A be an affine domain over a field k of characteristic 0, then A is regular if and only if Ωk(A)
is projective. And if A is regular, then both DerkA and Ωk(A) are finitely generated projective modules.

Proof. See [MR87, p.577, Corollary 2.11 and Theorem 2.12].
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2.4 Rings of Differential Operators
Given a commutative algebra R over a field of characteristic 0, we shall define its ring of differential operators D(R).
This is a filtered k-algebra in which

D(R)0 = {f ∈ EndkR|fbl − blf = 0, ∀b ∈ R} = {bl ∈ EndkR|b ∈ R} ∼= R

and suppose we have already defined D(R)p−1 for p ≥ 1, then we define

D(R)p = {f ∈ EndkR|fb− bf ∈ D(R)p−1 for all b ∈ R}.

Thus D(R) =
∞∪
p=0

D(R)p. By definition, clearly one has D(R)pD(R)0 ⊆ D(R)p, ∀p ≥ 0. By induction on q ≥ 0, one

can easily show that D(R)pD(R)q ⊆ D(R)p+q, ∀p, q ≥ 0. Thus D(R) is indeed a filtered algebra.

Lemma 2.25. D(R)1 = R+ DerkR.

Proof. Clearly, one has R + DerkR ⊆ D(R)1. Conversely, take f ∈ D(R)1, without loss of generality, assume that
f(1) = 0, for otherwise one can relace f by f − f(1). Then for any a, b ∈ R, one has

f(ab)− af(b) = (af − fa)(b) = f(a)b,

which completes the proof.

Proposition 2.26. The ring of differential operators D(R) has ∆(R) as a filtered subring.
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